



# INCREASE YOUR PRODUCTIVITY WITH LECHLER SPRAY TECHNOLOGY.

Lechler GmbH is a German family-owned company located in Metzingen near Stuttgart, Baden-Wurttemberg and was founded 1879. The company develops and manufactures approx. 30,000 models of spray nozzles.

Our precision nozzles and systems are widely used in **general industry** (e.g. food and beverage, chemical, pharmaceutical, automotive, electronic industries); **metallurgical industry** (e.g. descaling, roll cooling, continuous casting); **environmental technology** (e.g. SNCR, SCR, and gas cooling) and **agriculture**.

For over 135 years, Lechler products have earned a reputation for excellent quality. The decisive factor was always to meet our customers' requirements through our state of the art and experience. Today, Lechler manufactures nozzles in Germany, China, England, Hungary, India and the USA with more than 700 employees in the group. But despite this international alignment, at our heart, we remain a familyowned company with the typical passion for precision, innovation and the drive to always become that little bit better.

**Lechler Spray Technology** Sdn. Bhd. in Petaling Jaya, Kuala Lumpur, Malaysia was founded in 2016 and is a wholly owned affiliate of Lechler GmbH, Germany. Our business scope is to supply Lechler group's products, technical solutions and services to customers in South-East Asia. Lechler Spray **Technology** is very successful in bringing the advanced spray technology and spray solutions from Germany to meet our customer's requirements.

Following the increasing ASEAN market demands and to provide products with high quality, short delivery lead time and competitive price, we are able to deliver from stock in Malaysia to the whole region. Our sales force provides first-class service to customers on-site.



Lechler company in Malaysia



Lechler Germany, headquarters

### **TABLE OF CONTENTS**

| A          | Introduction          | Pages 4 – 21  | CHAPTER |
|------------|-----------------------|---------------|---------|
|            | Hollow cone nozzles   | Pages 23 - 30 | 1       |
|            | Full cone nozzles     | Pages 31 - 40 | 2       |
|            | Flat fan nozzles      | Pages 41 – 54 | 3       |
|            | Solid stream nozzles  | Pages 55 - 59 | 4       |
|            | Air nozzles           | Pages 61 – 66 | 5       |
| *          | Tank cleaning nozzles | Pages 67 - 83 | 6       |
| <b>Q</b> 0 | Accessories           | Pages 85 - 90 | 7       |

# TRADITION AND PROGRESS IN SPRAY TECHNOLOGY

## Your advantage lies in our productivity

New custom-made manufacturing techniques guarantee productivity and flexibility.



Process automation ensures repeatability and steady properties. For us, this means not only that one nozzle looks like the other, but that spray patterns are identical, too. This applies to 25.000 different variants, materials and sizes.

Lechler is one of the most important spray nozzle manufacturers world-wide. High production quantities allow us more easily to amortize costly research and development and machinery. That's why even a complicated nozzle can be offered at a reasonable price. At the known Lechler quality!

#### A few words on quality

Lechler products are used in many different industries and applications.

Therefore, the requirements of the products have to meet certain specifications. Lechler defines »quality« as the ability of our products to surpass the customers individual requirements for performance.



Lechler staff have always worked carefully and carried out permanent quality control from material reception through manufacturing to shipment.

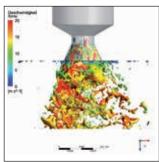
Our products will keep in daily service what we are promising here and now.

### What can be measured can be documented

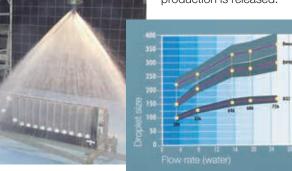
Already a long time before its daily use, we know the exact flow rate, spray angle and uniformity of distribution of each Lechler nozzle.



Right from the beginning, functions and spray characteristics are accurately defined and recorded by our sophisticated measuring techniques and reliable documentation.




Our computer-controlled measuring facilities such as the Laser-Doppler Particle Analyzer, the spray jet measuring device with 3D presentation, liquid distribution systems, and many more are the essential prerequisite for precise measuring data.


#### Research and development for a better future

For more than 135 years Lechler has been searching for new solutions and developed and manufactured spray nozzles for trendsetting applications. Internal and external information systems and international data bases give us the leading edge in R&D.

A comprehensive information system, connection to international databases and collaboration with external institutes supplement our own work in this area and create the broad interdisciplinary basis that is required today for excellent developments.



Ultra-modern techniques for construction and simulation are converted into products of high practical value by our staff of engineers and technicians. Full scale tests simulate real life conditions. Only when all details comply with our requirements, production is released.



Thanks to this data we can help solve your spraying problem.

# PERFECT NOZZLE TECHNOLOGY TO SOLVE MANY INDUSTRIAL TASKS

In many industries there is a number of tasks that can be economically accomplished with the aid of spraying techniques.

However, optimum effects only can be achieved when a spray nozzle manufacturer's wide knowledge of specific requirements and particular service conditions is taken into account, too – right from the project stage.

Where this is not the case, a job may quickly end up in a costly experiment for the user.

Lechler, aware of this risk, has put up special teams for the various fields of applications. These teams are joined by external consultants for various industries. In addition, there is the know-how Lechler has accumulated over many years of direct activity in all industries. These synergies are also useful for other, new spray applications. That's why our spray nozzle specialists are often asked to participate as competent consultants in the first planning phases.

As a result, solutions are found that are technically perfect as well as economically sound.



# Chemical and Petrochemical Industry

- Gas treatment
- Gas cooling
- AbsorptionTank cleaning
- Filter cleaning
- Steam desuperheating
- Gas conditioning
- Fire protection



# Pharma, Biotech and Cosmetics

- Tank wetting
- Tank cleaning
- Coating
- Sterilization



# Food and Beverage Industry

- Bottling and packaging
- Handling and conveying
- Machine cleaning
- Tank cleaning
- Pasteurisation
- Sterilization and disinfection
- Blanching and cooling
- Humidification
- Blowing off and drying



#### **Breweries and Distilleries**

- Bottling and packaging
- Handling and conveying
- Machine cleaning
- Tank cleaning
- Pasteurisation
- Sterilization and disinfection
- Blanching and cooling
- Humidification
- Blowing off and drying
- Sparging
- Evaporative cooling



#### Surface Technology

- Degreasing
- Phosphating
- Surface treatment
- Cleaning
- Blowing off and drying



#### **Parts Washing**

- Rinsing
- Cleaning
- Degreasing
- Blowing off and drying

Extreme environmental conditions along with areas having a high need for specialization characterize the metallurgical industry.

To meet the special requirements of this sector beside our standard nozzles we provide a wide range of specially developed and proven nozzles in different versions and materials. With numerous special products and custommade solutions we are able to optimally support our world-wide customers.



For applications such as

- secondary cooling in continuous casting
- hydro-mechanical descaling in hot rolling
- roll cooling in hot and cold rolling mills
- cooling of hot surfaces and gases
- rinsing of media in pickling lines

we offer suitable, efficient nozzles and nozzle systems for any production stage. As nozzles and nozzle systems play a crucial role in all production stages in terms of process optimization aimed at increasing quality and perfecting production, with our nozzle solutions you also get the benefits of cost-efficiency.

At the same time, customers have at their disposal a competent team of experienced specialists employing state-of-the-art design and production methods.

Besides the construction of new plants, one alternative can be the optimization of existing ones. The most common reasons for this are

- identifying and remedying quality problems
- improving ease of maintenance and lowering maintenance costs
- increasing production by increasing the production speeds
- changing the product formats and the material qualities (product mix)

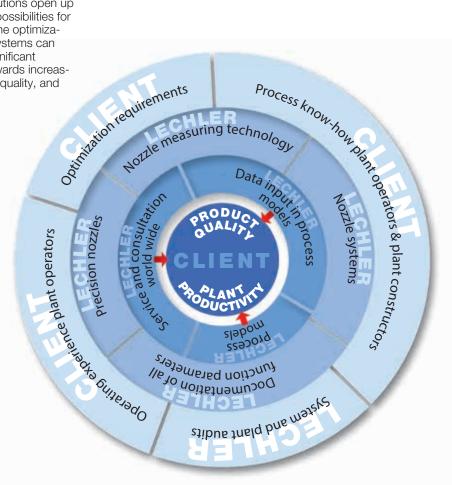
In most cases, the decision involves a combination of the above reasons. It is therefore important for the aims to be clearly defined.

# Lechler products and services for the metallurgical industry

- Precision nozzles
- Nozzles and application systems
- Nozzle configurations
- Application software
- Computer simulation
- Nozzle measuring technology
- Plant audits and process optimization
- Maintenance and commissioning
- Training
- Spare part management



#### Lechler system audits


Roll cooling in hot and cold rolling mills (steel, aluminium and non-ferrous metals) and also secondary cooling in continuous casting machines for steel are very complex systems and form part of the complete production processes. The full optimization potential can often be determined only via a precise study of all the important details. Lechler system audits include an evaluation of the existing production, performance and quality data, along with a carefully documented final report which, in addition to the collected and analyzed data, also contains suggestions for optimizing your system.



# Lechler nozzle configuration

An optimum nozzle configuration is the main prerequisite for fulfilling the production and quality specifications of all plants.

New nozzle solutions open up many different possibilities for saving costs. The optimization of nozzle systems can also make a significant contribution towards increasing production, quality, and flexibility. With the help of Lechler's own PC-based simulation programs, we can analyze the current situation and make optimization suggestions based on state-of-the-art nozzle technology.









#### Continuous casting of steel

From simple billet casters for rebars to sophisticated machines for tire cord grades or for casters for beam blanks and round blooms, Lechler offers the optimal nozzle

solution both for water only cooling or airmist systems. The same goes for thick or thin slab casters. Solutions for Hard Hard Cooling®, intensive cooling and soft reduction applications are also available.





#### Rolling mill technology

The Lechler product portfolio for this process step comprises nozzles for roll cooling solutions as well as nozzles for hydromechanical descaling. Selective roll cooling systems and valves are also available.

Typical nozzles used in rolling mills are

- Descaling nozzles, e.g. SCALEMASTER®
- Flat jet nozzles

Typical nozzles used for continuous casting are



# SELECTOSPRAY® roll cooling systems

With the SELECTOSPRAY® roll cooling system, Lechler provides an industry standard for selective roll cooling in the rolling of flat steel, aluminium and other non-ferrous strips.



### Pickling lines

The closer it comes to the final step of a production process, the more important the direct result is. Hence, the pickling line has a decisive function in the entire production chain of steel. There is an amazing number of options to improve and optimize your process by nozzles and nozzle arrangements.

The most common nozzles used in pickling lines are

- flat jet nozzles
- tongue-type flat jet nozzles
- axial-flow full cone nozzles
- air nozzles, eductor nozzles and tangential nozzles



For other applications such as cooling processes, dedusting or quenching, Lechler also offers the suitable nozzles.

# Efficient cooling and conditioning with Lechler lances and systems



When it comes to effective protection of our environment, know-how, a sense of responsibility and commitment are imperative.

As an international specialist for nozzle engineering, we have access to a wide-ranging knowledge and experience in the field of energy and environmental technology. Therefore, we are a competent partner in this sector.

Leading OEMs and operators all over the world have opted to become Lechler partners because they have been impressed by our innovative strength, our high level of competence in solving problems, and our global organization.

Specializing in systems along with the understanding of processes – our solutions for environmental applications are successful world-wide.

We provide nozzles, nozzle lances, and systems for applications such as:

- Gas cooling and conditioning
- Denitrification (DeNOx)
- Desulphurization (DeSOx)
- Droplet separators



# Lechler products and services for cooling and conditioning applications

The base frame and the base modules are identical for all three configurations. The difference lies in the number of lances and injection levels, as well as in the software and sensor packages for the successful control of all necessary influencing factors.

Innovative solutions for trending markets

Lechler is your innovative and reliable partner in all matters relating to gas cooling and conditioning. Always with the aim of employing our expert knowledge to optimize your process.

For many years now, nozzles and spray systems for industrial gas conditioning have been an integral part of our Environmental Technologies portfolio.

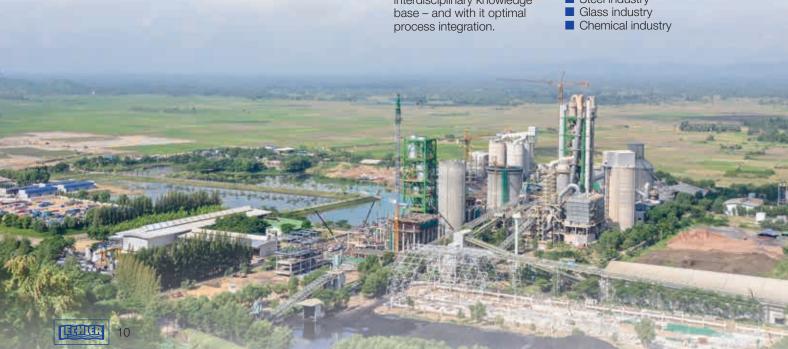
An international team of outstanding engineers and process engineers continuously develop new solutions and adapt them to new challenges. Through the use of global databases and close cooperation with external specialized institutes and renowned plant manufacturers, we have built up an interdisciplinary knowledge base – and with it optimal process integration.

Our constant exchange of experiences with operators of numerous plants means we are always in tune with the latest developments.

Nozzle lance for SCR applications

Vario Jet® lance

Cluster head spillback


nozzle lance

## The right solution for every requirement

With our wide range of nozzles and gas conditioning systems, we offer the perfect solution for every application. Every plant naturally comes with its own set of challenges.

Our nozzle lances and systems have proved in different applications and plants all over the world:

- Cement and lime industry
- Waste incineration plants
- Power plants
- Steel industry



# *VarioCool*<sup>®</sup> gas cooling system

Our valve skid units for regulating the flow rates of water and atomizing air are individual customer-specific solutions. Based on the requirements in each case, our first step is to design an

overall concept and select the best components in order to create a perfectly tailored solution.

An exact knowledge of the characteristic properties of our nozzles is the key here. For only a complete system that is coordinated to how the

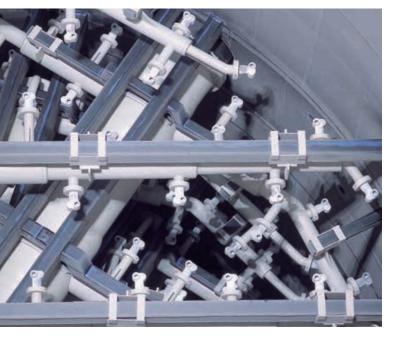
nozzles function and operate will ensure smooth and economical operation of the gas cooling system.





#### VarioClean® - NOx The denitrification solution that grows with you

Depending on the legal situation, the modular system can be flexibly upgraded across the three configuration levels Basic, Efficiency, and High Efficiency SNCR.






#### Talk to us

Your requirements are the first step towards a solution. We are more than happy to help you solve your individual tasks. Tell us your objectives and we will take care of the solution. If the solution is not yet available, we will tailor-make one for you. That is our promise.

High Efficiency SNCR



Flue gas desulphurization

Air pollution, caused by the emissions of power stations, waste incineration plants, factories, etc., severely affects our environment. Since its effects are to be seen in every direction, operators of combustion and steam raising plants have become deeply aware of the problem and government authorities are issuing ever more stringent regulations aimed at reducing environmental pollution.



As a specialist in the field of flue gas cleaning systems, Lechler too has faced a challenge, because the majority of flue gas cleaning plants is equipped with precision nozzles of Lechler manufacture – atomizing nozzles designed exactly to meet the needs of modern pollution control systems.

Criteria for the design of such nozzles include:

- Tower cross-section
- Flue gas analysis
- Gas flow rate
- Gas temperature
- Installation conditions
- The nature of the liquid to be sprayed and its composition

Being optimally designed from a fluidics viewpoint, Lechler nozzles meet all the demands of modern technology for nozzles used for the cleaning of outgoing air – narrow dropletsize spectrum and even droplet distribution over the tower cross-section – as essentials for intensive mass transfer between the gas and liquid. The types of nozzles offered are as widely varied as the materials used for their construction.

In selecting the most suitable nozzle for a particular application, these major factors have to be considered

- the necessary droplet spectrum
- the even distribution of the droplets
- an intensive water vorticity
- internal geometries to avoid nozzle blockages
- the choice of wear-resistant material
- reliable means of mounting the precision nozzles

Lechler precision nozzles play an extremely important role in flue gas desulphurization plants

- in the quench zone
- in the absorber zone
- in the droplet separator zone

In a great many desulphurization plants around the world, Lechler precision nozzles are selected to suit the desulphurization process requirements and have been installed to provide a reliable solution.





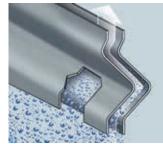


#### **Applications**

- Energy industry
   e.g. steam drums, steam generation, exhaust gas cleaning
- Pulp & paper industry

   e.g. black liquor evaporation, chemical recovery,
   exhaust gas cleaning
- Food industry
   e.g. juice evaporation,
   sugar evaporation
- Chemical industry

   e.g. condensation,
   desalination, evaporation,
   gas scrubbing systems
- Oil and gas industry
- Metallurgy


Whatever your application looks like. We take care of your problem – with tailormade solutions.

#### **Droplet separators**

Droplet separators have long played a vital role in many process operations in pulp and paper, sugar, or gas washing plants applications. They become even more important through more stringent environmental protection regulations, higher efficiency, and higher product quality requirements.

Lechler droplet separators are reliable figures in your plant. Wherever liquid has to be separated efficiently and benificially, Lechler highperformance separators are the right choice.

Whether vertical or horizontal flow direction, whether made of plastics or stainless steel, or as frame unit ready for installation or complete with housing or pressure vessel – Lechler droplet separators are designed and manufactured completely according to your needs.



Vertical gas flow




Horizontal gas flow









LTH 600

### WHICH (SPRAY) CHARACTER GOES WITH YOU?

### Spray technology has its own rules

When a liquid flow is made to disintegrate into more or less fine droplets, this is called atomization. The necessary prerequisites are mainly reached by the following principles of atomization:

#### Single-fluid atomization

By narrowing the crosssections of passage within a nozzle, flow speed increases. Static energy is transformed into kinetic energy (speed). When tension is released at the nozzle orifice, a laminar liquid flow with aerodynamic waves is produced, causing the liquid flow to disintegrate into droplets of different sizes.

#### **Pneumatic atomization**

The different flow speeds of gas and liquid generate pressure waves, breaking up the liquid into extremely fine drop particles. The different relative speeds allow atomizing e.g. of viscous liquids at low pressure. Pneumatic atomizers operate both according to internal and external mixing principles, whereby gas and liquid mix inside or outside the nozzle. Depending on the nozzle design, liquid is either supplied by siphon action or by gravity. According to the configuration of the nozzle tip, different spray patterns may be obtained.





#### Pneumatic flat fan atomizing nozzles

produce a flat spray pattern with extremely fine droplets and spray angles up to 80°. These nozzles are particularly suited for applications requiring fine droplets and a wide linear impact.

# Pneumatic full cone atomizing nozzles,

however, are preferably used for applications demanding uniform circular impact patterns or larger spray distances. Generally, a narrow full cone with approx. 20°-30° is formed. Wider spray angles can be achieved by using special multi-orifice designs.





# Axial-flow hollow cone nozzles

The liquid supply is axial, rotary motion of the liquid is generated by so-called swirl inserts or vanes. Axial-flow hollow cone nozzles allow to produce the finest droplets achievable with pressure-operated nozzle designs. This is also called hydraulic atomization.

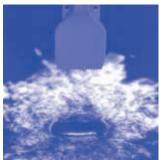
### Eccentric-flow hollow cone nozzles

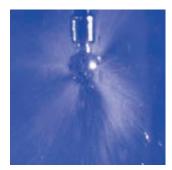
The liquid supply, which is tangentially positioned to the mixing chamber, causes the liquid to rotate. A liquid layer forms around the inside walls of the nozzle which influences heavily the drop size. A rotary motion of the liquid flow is transformed at the nozzle orifice into axial and tangential speeds. A circular liquid screen is formed which disintegrates into fine droplets soon after leaving the nozzle orifice. This nozzle design has wide free cross-sections making it highly clog-proof.

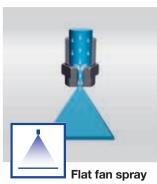




# Axial-flow full cone nozzles


achieve a uniform liquid distribution over a circular area. A rotary motion of the liquid is achieved with the aid of swirl inserts inside the free cross-section of the nozzle. Spray formation, liquid distribution, and shaping of droplets are influenced by the dimensioning and functional coordination of the rotary motions and the swirl chamber. Turbulent flows with different axial and tangential speed components lead to overall coarser droplets than with a comparable hollowcone nozzle.


# Tangential-flow full cone nozzles


are free from swirl inserts. Therefore, they are not at all prone to clogging. The full cone spray pattern is produced by grooves milled into the bottom of the nozzle which provide a defined deviation of the liquid flow to the mixing chamber's center, whereby an extremely uniform area distribution of the atomized liquid is obtained.

















The spray pattern of **flat fan** nozzles features a sharply delimited line due to internal flow characteristics. The coverage width can be varied by modifying the geometric configuration of the nozzle orifices, where the liquid is shaped into flat, fanlike spray patterns. The flat liquid body takes on a laminar form and disintegrates into droplets as its distance from the nozzle orifice increases. Parabolic, trapezoidal or rectangular impact areas are achieved by adequately determining the functional and geometric dimensions.

The smooth **solid stream** is also known as the so-called "primary jet". Actually, the solid stream nozzle is not supposed to produce an atomized spray pattern, because it has been designed for maximum jet power. Here, the skill of Lechler design engineers was challenged to prevent concentrated, straight jets from disintegrating into drops at large distances.

Air nozzles are used for dispersing air or steam in a concentrated and straight fan. Generally, air nozzles have a flat fan or solid stream spray pattern. When using conventional air nozzles, air is blown through a single hole. Often a loud, ear-splitting and hissing noise is produced. To avoid this unpleasant noise, Lechler has designed special multichannel air nozzles. Sound level and air consumption of these nozzles are very low.

Tank cleaning nozzles can be used for both small and large tanks and are available as both rotating and static sprays. The rotating nozzles (rotational cleaners) are driven by the cleaning liquid by means of specially positioned nozzles or by turbine or internal gears. Rotational cleaners achieve very good cleaning of the entire tank surface as rapid-repetition impact loosens the dirt and washes it off of the inside tank surfaces.

Static spray balls do not rotate. They are used primarily for washing down relatively small tanks and vessels. All tank cleaning nozzles are operating at low pressures.

Tongue-type nozzles are of a special kind. The flat fan pattern is generated by a solid stream, impinging upon an external deflector plate ("the tongue"). Tongue-type nozzles are particularly clog-proof and produce a sharply delimited flat fan pattern.

#### **NOZZLE PERFORMANCE AND SERVICE DATA**

## The essential operating data of spray nozzles is

- Flow rate
- Spray angle
- Liquid distribution
- Spray impact
- Droplet size and droplet spectrum

### Flow rate, pressure and spray angle

Flow rates and spray angles are dependent on feed pressure and viscosity of the liquid to be sprayed. We have measured the flow rates stated in the catalogue with painstaking accuracy, using inductive flow meters. The spray angle is determined right at the nozzle's orifice. The indications given on spray widths and coverage diameters are more useful at larger distances from the orifice. Air friction losses and ballistic phenomenons influence the spray behavior and the size of the impact area in dependence on the chosen service pressure. The pressure (p) is the feed pressure above atmospheric, which is available at the liquid inlet into the nozzle. The spraying operation is performed under counterpressure, the flow rate is dependent on the differential pressure. Minimum and maximum pressures are adjusted to the required flow rates and the spray quality.

#### **Distribution of liquid**

A uniform distribution of liquid is of paramount importance, e.g. for coating. We have developed special measuring methods which instantaneously deliver test results that are repeatable any time. Thanks to our electronic image processing measurement accuracy is approx. +/- 1 %. The test results are documented and made available to customers for design and construction tasks.





Thus they'll be sure in advance that Lechler spray nozzles exactly comply with their requirements.

#### **Spray impact**

For measuring the jet distribution of the spray impact and the impact itself a highly sensitive device is guided through the jet pattern. The measuring values detected by the sensor are transformed into electric signals and stored in a computer. Jet impact measurements show how uniformly the jet impact is acting on the impacted area. This data is very useful, in particular for high pressure applications where a maximum of pump energy has to be transformed into cleaning power.

#### Jet pressure (impact)

In the case of nozzles, the jet pressure (i.e. the effect of a spray jet on a surface) is normally referred to as the impact and is expressed in N/mm².

This is the conversion of the jet force on the impacted surface.

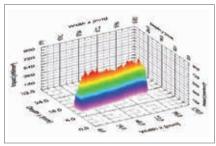
In the jet pressure measurement, a highly sensitive sensor with a defined surface area is guided through the spray jet. The spray jet exerts a constantly changing force on the sensor, which is saved in the computer. The jet pressure can be determined from the force measured at the respective location and the surface of the sensor.



Jet pressure distribution measurements show the regularity of the jet force curve on the impacted surface.

In highpressure applications in particular, this data is of great practical use because it relates to the maximum conversion of pump energy into cleaning effect.

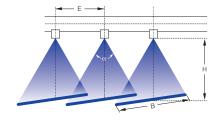
**Low jet pressures** are obtained by using full-taper or wide-angle flat jet nozzles (120°).


High jet pressures are produced by flat jet nozzles with narrower jet angles (15° to 60°). Full-jet nozzles produce maximum jet pressures.

### Droplet sizes and droplet spectrum

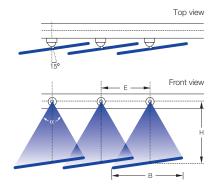
For many areas of use, it is necessary to know the size of the droplet spectrum produced by the nozzle.




One of the most precise measuring devices for this is the laser doppler particle analyser. Since this measuring method simultaneously measures both droplet size and droplet velocities, we obtain a complete description of the atomization characteristic.



### **EXAMPLES FOR NOZZLE ARRANGEMENT**


# Arrangement of flat fan nozzles with parabolic liquid distribution

Lechler flat fan nozzles provide a consistent, uniform coverage over the impact area. For this purpose, the spray widths B ought to overlap each other by 1/3 to 1/4. To avoid interferences of the sprays, the nozzle orifices must be offset 5°-15° to the pipe axis.

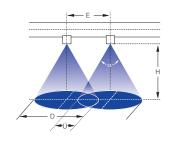


### Alignment of tongue-type nozzles

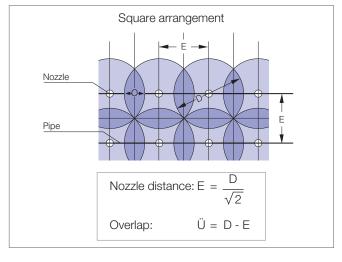
In order to achieve an even surface coverage the nozzles need to be aligned in such a way that spray widths B overlap by 1/3 to 1/4. Therefore the nozzles should be inclined in an angle of 15° to the vertical of the horizontal axis of the tube (either with a weld base at an angle or a Lechler ball joint nozzle mount) in order to prevent a disturbance of the spray.



#### Arrangement of full cone and hollow cone nozzles

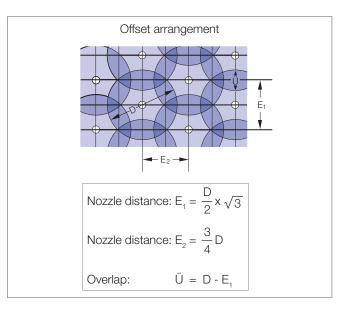

For full cone and hollow cone nozzles, the distance E should be sized so that the spray cones overlap by about 1/3 to 1/4.

O = Overlap of spray angles


D = Spray diameter
E = Nozzle distance

H = Installation distance of nozzles

 $\alpha$  = Spray angle




## Square or offset arrangement of full cone or hollow cone nozzles



The spray angles stated in this catalogue are based on a specific design pressure.

Different pressures and production tolerances lead to differing spray angles. Please consider our adjustment proposals on this page and ask us for a detailed spray width diagram if needed.



#### **TECHNICAL INFORMATION**

Here you will find explanations of the special terms and abbreviations used in the tables on the following pages.

#### **Droplet sizes**

The droplet size information refers to the Sauter mean diameter  $d_{32}$ .

This is defined as the droplet diameter measured on the basis of surface area.

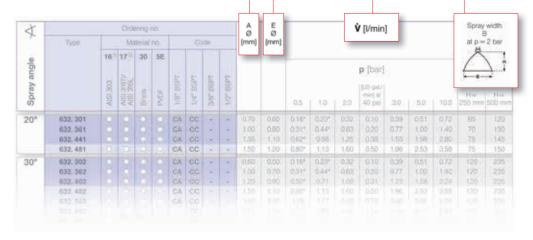
The volume/surface area ratio of a droplet of this diameter is the same as for the sum of all droplets in the spray jet.

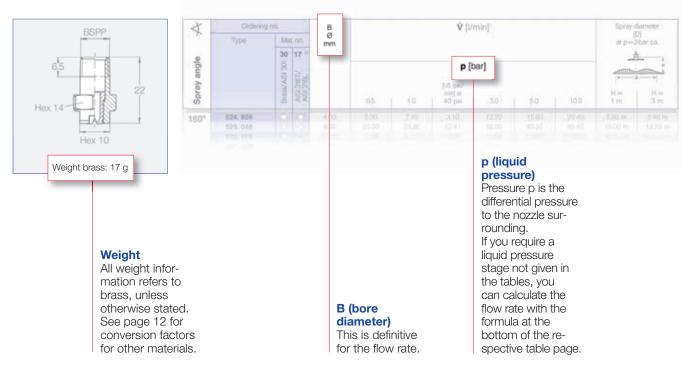
Lechler nozzles are manufactured with the highest precision and undergo permanent quality checks. Nevertheless, production-related tolerances can affect the jet angle, volume flow, droplet size and droplet distribution.

# A (equivalent bore diameter)

Applies to elliptical discharge holes of flat fan nozzles. A cylindrical hole with a diameter A has the same surface area as the ellipse.

# E (narrowest free cross section of the nozzle)


Important characteristic for determining the pre-filtration. Can be less than B due to several swirl ducts. (Nozzle filter see page 68)


## B (spray width)

All flow rate data in this catalogue is based on measurements with water, and takes into account the individual flow parameters of the various nozzle designs.

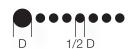
**V** (flow rate)

The spray sizes can deviate at reference pressures different to those listed in the tables.





### **CONVERSION TABLES**


#### **Droplet sizes**

- · 0,5 mm
- 1 mm



5 mm

 $1~mm=1000~\mu m$ 



The volume of a large droplet corresponds to the volume of 8 droplets of half the diameter. The surface of the large droplet is four times as big as the one of a small droplet. The total surface of the 8 small droplets, however, is twice as big as the surface of a large droplet.

| Oin als fluid a seed s             | Liquid Pressure                          |      |                        |                   |                       |                   |  |  |  |
|------------------------------------|------------------------------------------|------|------------------------|-------------------|-----------------------|-------------------|--|--|--|
| Single fluid nozzles               |                                          | 1    | :                      | 2                 |                       | 5                 |  |  |  |
|                                    | Flow rate Droplet size<br>V [l/min] [µm] |      | Flow rate<br>V [l/min] | Droplet size [µm] | Flow rate<br>V[I/min] | Droplet size [µm] |  |  |  |
| Axial-flow hollow cone nozzle      | -                                        | -    | 0.1<br>1               | 140<br>240        | 0.17<br>1.6           | 100<br>180        |  |  |  |
| Tangential-flow hollow cone nozzle | -                                        | -    | 1                      | 320               | 1.44                  | 240               |  |  |  |
|                                    | 1.8                                      | 700  | 25                     | 640               | 36                    | 490               |  |  |  |
| Full cone nozzle                   | 0.8                                      | 540  | 1                      | 400               | 1.4                   | 300               |  |  |  |
|                                    | 19                                       | 1300 | 25                     | 1100              | 36                    | 750               |  |  |  |
| Cluster head nozzle                | 0.9                                      | 200  | 1.25                   | 175               | 2                     | 150               |  |  |  |
|                                    | 20                                       | 400  | 28                     | 265               | 44                    | 190               |  |  |  |
| Flat fan nozzle                    | 0.7                                      | 400  | 1                      | 360               | 1.6                   | 300               |  |  |  |
|                                    | 18                                       | 1200 | 25                     | 1000              | 40                    | 690               |  |  |  |

| Durantia stancinias normas  | Air-/water ratio [m³/h : I/min] |                   |                        |                   |                       |                      |  |  |  |  |
|-----------------------------|---------------------------------|-------------------|------------------------|-------------------|-----------------------|----------------------|--|--|--|--|
| Pneumatic atomizing nozzles | ,                               | 5                 | 1                      | 0                 | 2                     | 20                   |  |  |  |  |
|                             | Flow rate<br>V [l/min]          | Droplet size [µm] | Flow rate<br>V [l/min] | Droplet size [µm] | Flow rate<br>V[I/min] | Droplet size<br>[µm] |  |  |  |  |
| others                      | others                          | 90                | others                 | 55                | others                | 40                   |  |  |  |  |

#### p Pressure

| Unit          |              | Conve                    | ersion                |          |  |
|---------------|--------------|--------------------------|-----------------------|----------|--|
|               | bar          | Pascal<br>[Pa] =<br>N/m² | psi                   | lb/sq ft |  |
| 1 bar         | 1            | 100000                   | 14.5                  | 2089     |  |
| 1 Pascal [Pa] | 1.10-5       | 1                        | 14.5·10 <sup>-5</sup> | 0.0209   |  |
| 1 psi         | 0.06895      | 6895                     | 1                     | 144      |  |
| 1lb/sq ft     | 0.479 · 10-3 | 47.9                     | 6.94·10 <sup>-3</sup> | 1        |  |

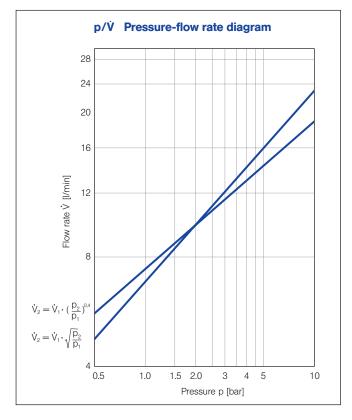
#### **V Volume**

| Unit          |       | Conve                  | ersion   |        |
|---------------|-------|------------------------|----------|--------|
| Offic         | I     | m³                     | Imp. gal | US gal |
| 1 l (1 dm³)   | 1     | 1⋅10⁻³                 | 0.22     | 0.264  |
| 1 m³          | 1000  | 1                      | 220      | 264.2  |
| 1 Imp. gallon | 4.546 | 4.546·10 <sup>-3</sup> | 1        | 1.201  |
| 1 US gallon   | 3.785 | 3.785⋅10-3             | 0.8327   | 1      |

### **V** Flow rate

|                 |       |              | Conversion |                |                  |
|-----------------|-------|--------------|------------|----------------|------------------|
| Unit            | l/min | l/s          | m³/h       | US gal/<br>min | Imp. gal/<br>min |
| 1 l/s           | 60    | 1            | 3.6        | 15.85          | 13.20            |
| 1 I/min         | 1     | 0.01667      | 0.06       | 0.2642         | 0.22             |
| 1 m³/h          | 16.67 | 0.28         | 1          | 4.40           | 3.66             |
| 1 US gal./min   | 3.785 | 0.0631 0.227 |            | 1              | 0.8327           |
| 1 Imp. gal./min | 4.546 | 0.076        | 0.273      | 1.201          | 1                |

All flow rate data of the catalogue have been measured with water and consider the individual flow parameters of the nozzle designs.

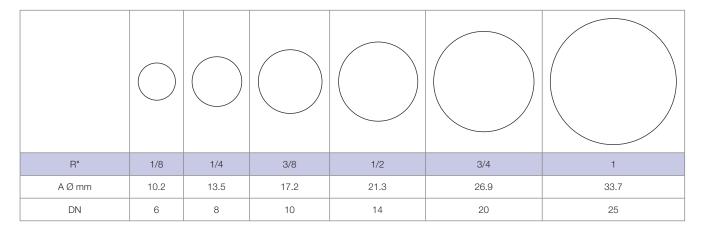

### $\boldsymbol{\rho}$ Change in specific weight

|                                        | $\dot{V}_{\rm w} =$                   | V <sub>FI</sub>                             |      |      | = Flow r                                                                                | ate (wate              | er) [I/min,                   | l/h] |  |
|----------------------------------------|---------------------------------------|---------------------------------------------|------|------|-----------------------------------------------------------------------------------------|------------------------|-------------------------------|------|--|
| V <sub>FI</sub>                        | = V <sub>w</sub> $\sqrt{\frac{1}{7}}$ | $\frac{\dot{Q}_{w}}{\dot{H}} = \dot{V}_{w}$ | X    |      | $\dot{V}_{_{\rm Fl}} =$ Flow rate of liquid, with a specific weight that differs from 1 |                        |                               |      |  |
|                                        | X = <b>\</b>                          | P <sub>H</sub>                              |      |      |                                                                                         | = Multip<br>cific weig | lier<br>ht [kg/m <sup>2</sup> | 3]   |  |
| ρ <sub>□</sub>                         | 500                                   | 600                                         | 700  | 800  | 900                                                                                     | 1000                   | 1100                          | 1200 |  |
| $\overset{\rho_{Fl}}{X}$               | 1.41                                  | 1.29                                        | 1.20 | 1.12 | 1.06                                                                                    | 1.0                    | 0.95                          | 0.91 |  |
| $\rho_{\scriptscriptstyle{	extsf{H}}}$ | 1300                                  | 1400                                        | 1500 | 1600 | 1700                                                                                    | 1800                   | 1900                          | 2000 |  |
| $\mathop{X}^{\rho_{\mathbb{H}}}$       | 0.88                                  | 0.85                                        | 0.82 | 0.79 | 0.77                                                                                    | 0.75                   | 0.73                          | 0.71 |  |

#### p/V Pressure/Flow rate

| Valid for <b>single- fluid nozzles</b> , except | $\dot{V}_2 = \sqrt{\frac{p_2}{p_1}} \dot{V}_1 [I/min]$                       |                                                   |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
| axial-flow full cone<br>nozzles                 | $p_2 = \left(\frac{\dot{V}_2}{\dot{V}_1}\right)^2 \cdot [p_1 \text{ [bar]}]$ | Ratio of both, given and required pressure – flow |  |  |  |
| Valid for <b>axial-flow full</b>                | $\dot{V}_2 = \left(\frac{p_2}{p_1}\right)^{0.4} \dot{V}_1 [I/min]$           | rate values                                       |  |  |  |
| cone nozzles                                    | $p_2 = \left(\frac{\dot{V}_2}{\dot{V}_1}\right)^{2.5} p_1 [bar]$             |                                                   |  |  |  |

### **WORKING AIDS**



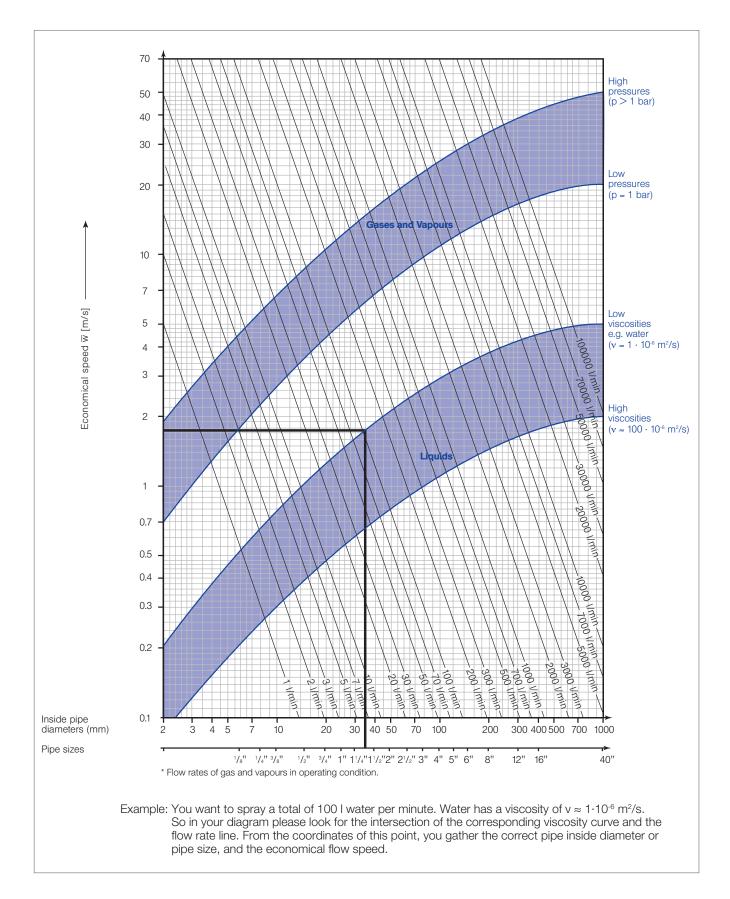

# Conversion factors for determining the weight of various materials/ diameters

| Material        | Factor |
|-----------------|--------|
| Brass           | 1.00   |
| Stainless steel | 0.95   |
| Plastics (PVDF) | 0.21   |
| Aluminium       | 0.33   |
| Silicon carbide | 0.39   |
| Titanium        | 0.54   |
| Cast iron       | 0.89   |

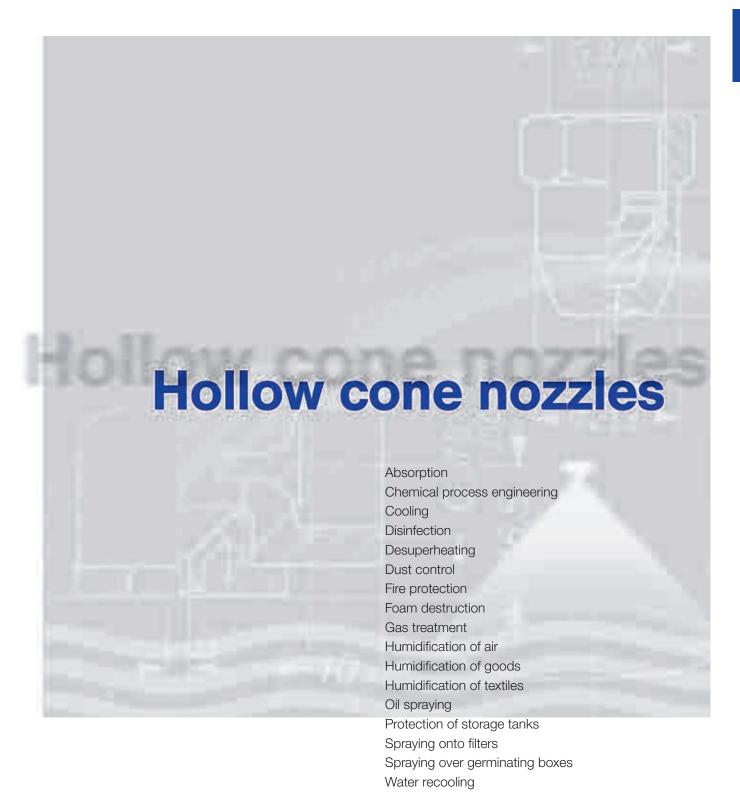
As a rule, the weight indications in this catalogue refer to brass. By applying the conversion factors stated, the approximate weight of nozzles in other materials can easily be calculated.

#### Determination of male thread sizes / diameters






#### **Lechler Industry App:**


all important calculation and conversion programs for nozzle technology combined in one App.

- Unit converter for pressure, volume and flow rate
- Pressure/flow rate calculator for single-fluid nozzles incl. axial-flow full cone nozzles
- Calculation of pipe diameters

### **DETERMINATION OF PIPE DIAMETERS**





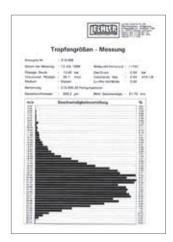


and many others...

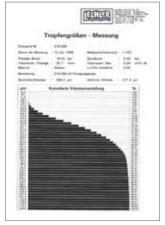


## Axial-flow hollow cone nozzles

Wherever a fine, uniform hollow cone spray is needed, e.g. for cooling and cleaning of gas, absorption processes, dust control, product dampening, oil spraying and air humidifying, axial-flow hollow cone nozzles have proved very efficient. The spiral grooves in the swirl inserts ensure an efficient whirling of the liquid. As a result, the contact surface of the atomized liquid is significantly increased within a remarkably narrow droplet spectrum. This creates extraordinarily favourable conditions for mass transfer.




- Finest drop particles
- Narrowest free crosssections
- Maximum spray angle: 90°


### Tangential-flow hollow cone nozzles

Tangential-flow hollow cone nozzles provide a very uniform hollow cone spray thanks to a particular flow geometry. Liquid is put into rotation by an eccentricity arranged liquid inlet. Thereby a very uniform liquid distribution is achieved with spray angles up to 130°. Tangential-flow hollow cone nozzles are of a self-cleaning design, offering a high operational safety, even at rather poor water conditions. Typical applications for tangential-flow hollow cone nozzles are: air-humidification in air conditioning systems or gas cleaning in chemical and environmental engineering installations.





Number/frequency distribution chart



Cumulated volume distribution chart

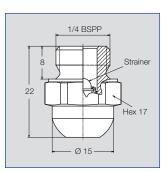
- Coarser droplets than axial-flow hollow cone nozzles
- Large narrowest free cross-sections
- Wide spray angles up to 130°
- Self-cleaning, nonclogging



| Axial-flow hollow cone nozzles | Series | À          | <b>v</b> [I/min]<br>at <b>p =</b> 2 bar | Connection                       | Application/<br>Design                                                                                                                    | Page |
|--------------------------------|--------|------------|-----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                | 220    | 80°        | 0.040 – 0.390<br>(at p = 5 bar)         | 1/4 BSPP                         | Disinfection, humidification, cooling.  Extremely fine, fog-like hollow cone spray.                                                       | 26   |
|                                | 216    | 60°<br>90° | 0.63 – 1.70                             | 3/8 BSPP                         | Cooling and cleaning of air and gas, dust control, spraying onto filters, spray drying, desuperheating.  Fine, uniform hollow cone spray. | 27   |
|                                | 2TR    | 80°        | 0.32 - 0.96                             | Assembly with 3/8" retaining nut | Humidification of air, cooling and cleaning of gases, dust control, spraying onto filters. Fine, uniform hollow cone spray.               | 28   |

| Tagential-flow<br>hollow cone nozzles | Series                                                 | A          | <b>v</b> [I/min]<br>at <b>p =</b> 2 bar | Connection                                  | Application/<br>Design                                                                                                                                                                                                                                         | Page |
|---------------------------------------|--------------------------------------------------------|------------|-----------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                       | 302                                                    | 90°<br>90° | 1.40 – 25.00                            | 3/8 BSPP                                    | Humidification of air in air washers, dust control, spraying onto filters, foam control, cooling.  Non-clogging nozzle design, without swirl insert.                                                                                                           | 29   |
|                                       | 302<br>with<br>bayonet-<br>quick-<br>release<br>system | 90°<br>80° | 2.24 – 5.00                             | Assembly with bayonet quick-release system. | Humidification of air in air washers, dust control, spraying onto filters, foam control, cooling. Quick and safe assembly with the aid of a bayonet quick-lock system. Automatic setting of spray plane. A time-saving alternative to threaded nozzle designs. | 30   |




### **Axial-flow hollow cone nozzles**

### Series 220



Extremely fine, fog-like hollow cone spray.
Applications:
Disinfection, humidification, cooling.





| Spray<br>angle | Orderin | _       | Code     | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] | Mesh<br>size<br>[mm] |       | <b>V</b> [l/min] |       |       |       |       |       |       | Spray<br>diameter D<br>at p = 5 bar |
|----------------|---------|---------|----------|----------------|----------------|----------------------|-------|------------------|-------|-------|-------|-------|-------|-------|-------------------------------------|
|                | Type    | 1Y      | <u>ط</u> |                |                | <b>p</b> [bar]       |       |                  |       |       |       |       |       |       |                                     |
|                |         | 316L SS | 1/4 BSPP |                |                |                      | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | 20.0  | 50.0  | 100.0 | H =<br>100 mm                       |
| 80°            | 220.085 | 0       | AC       | 0.25           | 0.25           | 0.10                 | 0.025 | 0.031            | 0.040 | 0.047 | 0.057 | 0.080 | 0.126 | 0.179 | 140                                 |
|                | 220.145 | 0       | AC       | 0.40           | 0.40           | 0.10                 | 0.052 | 0.064            | 0.082 | 0.097 | 0.116 | 0.164 | 0.259 | 0.367 | 140                                 |
|                | 220.185 | 0       | AC       | 0.55           | 0.35           | 0.20                 | 0.082 | 0.101            | 0.130 | 0.154 | 0.184 | 0.260 | 0.411 | 0.581 | 140                                 |
|                | 220.245 | 0       | AC       | 0.70           | 0.50           | 0.20                 | 0.165 | 0.202            | 0.261 | 0.309 | 0.369 | 0.522 | 0.825 | 1.167 | 140                                 |
|                | 220.285 | 0       | AC       | 0.90           | 0.55           | 0.20                 | 0.247 | 0.302            | 0.390 | 0.461 | 0.552 | 0.780 | 1.233 | 1.744 | 140                                 |

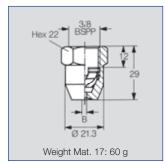
 $\mathsf{B} = \mathsf{bore} \; \mathsf{diameter} \cdot \mathsf{E} = \mathsf{Narrowest} \; \mathsf{free} \; \mathsf{cross} \; \mathsf{section}$ 

The integrated strainer avoids clogging of the nozzle and increases its service life.

Example Type + Material-no.+ Code = Ordering no. for ordering: 220.085 + 1Y AC = 220.085.1Y.AC



### **Axial-flow hollow cone nozzles**


### Series 216



# Fine, uniform hollow cone spray.

Applications:
Cooling and cleaning of air and gas, dust control, spraying onto filters, spray drying, desuperheating.





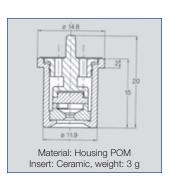
| Spray angle | Ordering no.       | Mat.<br>no. | G    | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |              |              | <b>Ý</b> [l/ |              |              |              | Spray<br>diameter D<br>at p = 3 bar |
|-------------|--------------------|-------------|------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------------------------|
|             | Туре               | 316Ti SS    | BSPP |                |                | 1.0          | 2.0          | <b>p</b> [k  | 5.0          | 10.0         | 20.0         | H = 250 mm                          |
| 60°         | 216.364<br>216.404 | 0           | 3/8" | 1.40           | 1.40<br>2.00   | 0.45<br>0.71 | 0.63<br>1.00 | 0.77<br>1.22 | 1.00<br>1.58 | 1.41<br>2.24 | 1.99<br>3.16 | 200<br>200                          |
| 90°         | 216.496            | 0           | 3/8" | 3.00           | 2.00           | 1.20         | 1.70         | 2.08         | 2.69         | 3.80         | 5.38         | 500                                 |

 $B = bore diameter \cdot E = Narrowest free cross section$ 

Example Type + Material-no. = Ordering no. for ordering: 216.364 + 17 = 216.364.17



# Axial-flow hollow cone nozzles for retaining nut Series 2TR




Hollow cone nozzle with ceramic insert. Assembly with retaining nut. Fine, uniform hollow cone spray.

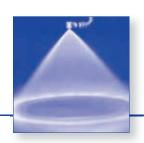
Applications:

Humidification of air, cooling and cleaning of gases, dust control, spraying onto filters.





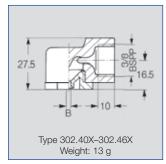
| Spray angle | Ordering no.             | Colour         | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |              |              | <b>V</b> [l/ |              |              |              | Spray<br>diameter D<br>at p = 3 bar |
|-------------|--------------------------|----------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------------------------|
|             | Туре                     |                |                |                | 1.0          | 2.0          | 3.0          | 5.0          | 7.0          | 10.0         | H = 250 mm                          |
| 80°         | 2TR.305.C6               | orange         | 0.90           | 0.80           | 0.23         | 0.32         | 0.39         | 0.51         | 0.60         | 0.72         | 450                                 |
|             | 2TR.365.C6<br>2TR.405.C6 | yellow<br>blue | 1.40<br>1.70   | 0.95           | 0.45<br>0.68 | 0.63<br>0.96 | 0.78<br>1.17 | 1.01<br>1.52 | 1.19<br>1.79 | 1.42<br>2.14 | 450<br>450                          |

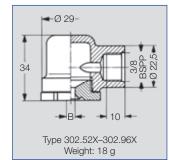

 $B = bore diameter \cdot E = Narrowest free cross section$ 



### Tangential-flow hollow cone nozzles

**Plastic version** 


Series 302




# Uniform hollow cone spray. Non-clogging nozzle, without swirl insert.

Applications: Humidification of air in air washers, dust control, spraying onto filters, foam control, cooling.

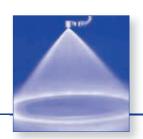






| Spray angle | Orderir | ng no.  |          |    |     | B<br>Ø | E<br>Ø |       |       | <b>V</b> [I/ | min]  |       |       | Sp<br>diame |        |
|-------------|---------|---------|----------|----|-----|--------|--------|-------|-------|--------------|-------|-------|-------|-------------|--------|
| aligie      |         | ١       | ∕lat. nc | ). |     | [mm]   | [mm]   |       |       |              |       |       |       | at p =      |        |
|             |         | 5E      | 51       | 53 | 56  |        |        |       |       | <b>p</b> [l  | oar]  |       |       | IZ          |        |
|             | Туре    |         |          |    |     |        |        |       |       |              |       |       |       |             | 2      |
|             |         | H.      |          |    | 5   |        |        |       |       |              |       |       |       | H =         | H=     |
|             |         | 302 464 |          |    | POM |        |        | 0.5   | 1.0   | 2.0          | 3.0   | 5.0   | 10.0  | 250 mm      | 500 mm |
| 60°         | 302.464 | -       | 0        | -  | 0   | 3.80   | 1.95   | 0.70  | 0.99  | 1.40         | 1.71  | 2.21  | 3.13  | 300         | 560    |
| 90°         | 302.406 | -       | 0        | -  | -   | 2.60   | 1.40   | 0.50  | 0.71  | 1.00         | 1.22  | 1.58  | 2.24  | 400         | 880    |
|             | 302.526 | -       | 0        | 0  | -   | 5.00   | 2.00   | 1.00  | 1.41  | 2.00         | 2.45  | 3.16  | 4.47  | 400         | 880    |
|             | 302.566 | -       | -        | 0  | -   | 5.00   | 2.40   | 1.25  | 1.77  | 2.50         | 3.06  | 3.95  | 5.59  | 400         | 880    |
|             | 302.606 | -       | 0        | -  | -   | 5.00   | 3.20   | 1.57  | 2.23  | 3.15         | 3.86  | 4.98  | 7.04  | 450         | 950    |
|             | 302.766 | -       | 0        | -  | -   | 9.00   | 4.30   | 4.00  | 5.66  | 8.00         | 9.80  | 12.65 | 17.89 | 500         | 1050   |
|             | 302.886 | -       | -        | 0  | -   | 11.00  | 6.40   | 8.00  | 11.31 | 16.00        | 19.60 | 25.30 | 35.78 | 550         | 1130   |
|             | 302.966 |         |          |    |     |        | 8.60   | 12.50 | 17.68 | 25.00        | 30.62 | 39.53 | 55.90 | 550         | 1130   |

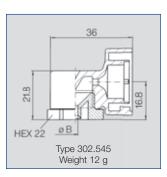
 $B = bore diameter \cdot E = Narrowest free cross section$ 

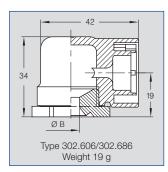

Example Type + Material-no. = Ordering no. for ordering: 302.464 + 51 = 302.464.51



# Tangential-flow hollow cone nozzles

Bayonet quick-release system

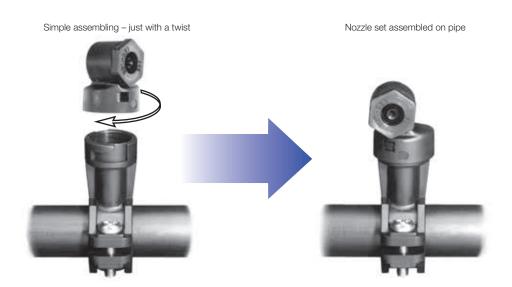



A time-saving alternative to threaded design. Quick and secure assembling. Automatic setting of spray direction.

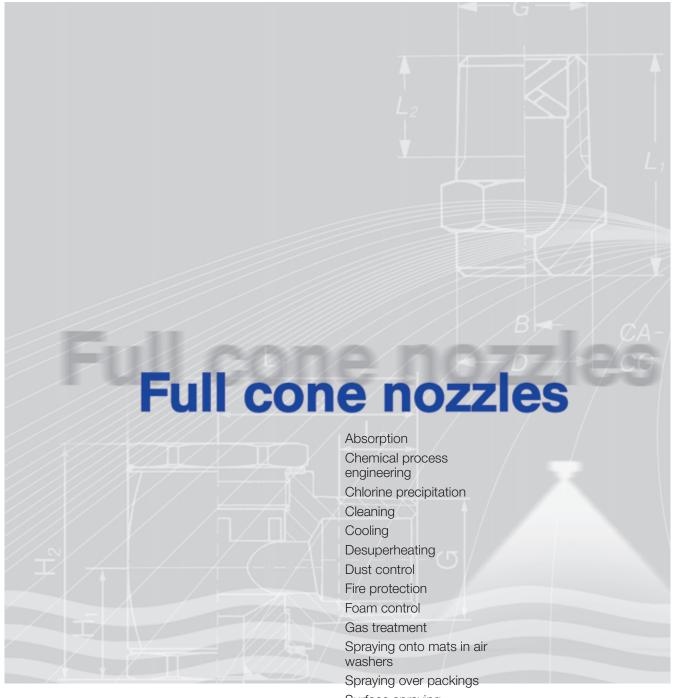
Applications: Humidification of air in air washers, dust control, spraying onto filters, foam control.








| Spray angle | Ordering n | 10.    |       |                        | B<br>Ø | E<br>Ø |      |      | <b>V</b> [l/ | min] |      |       | Sp<br>diame   |                                              |
|-------------|------------|--------|-------|------------------------|--------|--------|------|------|--------------|------|------|-------|---------------|----------------------------------------------|
| angic       |            | Mat    | . no. | Code                   | [mm]   | [mm]   |      |      |              |      |      |       | at p =        |                                              |
|             |            | 51     | 56    | se                     |        |        |      | l    | <b>p</b> [t  | oar] | ı    | l     |               | <b>\                                    </b> |
|             | Type       |        |       | net-<br>release        |        |        |      |      |              |      |      |       | <u>*−-</u> :  | · <del></del> -                              |
|             |            | A<br>A | POM   | Bayonet-<br>quick rele |        |        | 0.5  | 1.0  | 2.0          | 3.0  | 5.0  | 10.0  | H =<br>250 mm | H =<br>500 mm                                |
| 80°         | 302.545    | -      | 0     | KB                     | 2.30   | 2.30   | 1.12 | 1.58 | 2.24         | 2.74 | 3.54 | 5.01  | 400           | 700                                          |
| 90°         | 302.606    | 0      | -     | KB                     | 5.00   | 3.20   | 1.58 | 2.23 | 3.15         | 3.86 | 4.98 | 7.04  | 450           | 880                                          |
| 90          | 302.686 -  |        |       | KB                     | 7.50   | 3.40   | 2.50 | 3.54 | 5.00         | 6.12 | 7.91 | 11.18 | 500           | 1050                                         |


 $B = bore diameter \cdot E = Narrowest free cross section$ 

Example Type + Material-no.+ Code = Ordering no. for ordering: 302.545 + 56 KB = 302.545.56.KB









Surface spraying

Water treatment and many others...



Lechler full cone nozzles have an extraordinarily uniform liquid distribution over the whole circular impact area. The high precision of distribution is achieved by orienting the liquid inlet to the centre of the swirl chamber of the nozzle.

The optimized x-style swirl insert ensures a high operating safety due to its large free cross-sections.

Axial-flow full cone nozzles are available with different spray angles and in many flow rates. Therefore, matching to specific service conditions is possible without any difficulties.

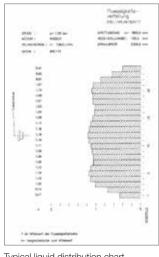
- Extremely uniform liquid distribution
- Wide flow rate range
- Large number of available spray angles





Special design for fire fighting: Deflector-plate nozzle

#### **Tangential-flow** full cone nozzles


Tangential-flow full cone nozzles are, for instance, particularly suited for closedcircuit spraying of liquids with a high quota of solid matter, or for fire fighting applications. The atomizing fluid is tangentially supplied to a swirl chamber, where it is put into rotation.

Tangential-flow full cone nozzles are free of swirl inserts. Hence, they are not at all prone to clogging. The full cone spray is obtained with

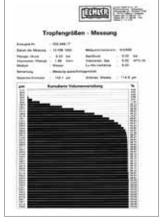
the aid of specially arranged grooves, milled into the nozzle bottom, which cause an adequate part of the rotating liquid flow to diverge to the center of the swirl chamber. Thereby, an extremely uniform area distribution of the sprayed liquid is achieved.

- Reliable in service
- Non-clogging
- Stable spray angles, unaffected by transient pressures

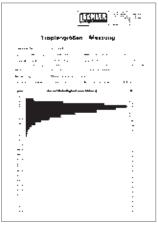




Typical liquid distribution chart


#### **Cluster Head Nozzles**

Lechler cluster head nozzles achieve a very large surface of the sprayed liquid by adding various finely atomizing single nozzles.


Whenever a fine fog-like full cone atomization with relatively large flow rates is necessary, e.g. gas exchange processes, steam cooling or dust suppression, Lechler cluster head nozzles have decisive advantages: overlapping hollow cones form a fine full cone atomization with an increased droplet surface area. These very fine droplets cannot be achieved by a

single-orifice spray nozzle of the same flow rate size.

The increased droplet surface area of the atomized liquid provides great efficiency in gas treatment and cooling applications.



Cumulated volume distribution



Number distribution



| Axial-flow full cone nozzles | Series     | A                         | <b>v</b> [l/min]<br>at <b>p =</b> 2 bar | Connection                                                         | Application/<br>Design                                                                                                                                                                                                       | Page     |
|------------------------------|------------|---------------------------|-----------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                              | 490<br>491 | 45°<br>60°<br>90°<br>120° | 1.00 – 71.00                            | 1/8 BSPT<br>1/4 BSPT<br>3/8 BSPT<br>1/2 BSPT<br>3/4 BSPP<br>1 BSPP | Cleaning and washing processes, surface spraying, Container cleaning, foam precipitation, degassing of liquids.  Non-clogging nozzle design.                                                                                 | 34<br>35 |
|                              | 460<br>461 | 90°                       | 2.00 – 71.00                            | 1/8 BSPT<br>1/4 BSPT<br>3/8 BSPT<br>1/2 BSPT<br>1 1/4 BSPP         | Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions.  Large free cross-sections, due to optimized x-style swirl insert. | 36       |
|                              | 405        | 90°<br>120°               | 100.00 – 315.00                         | 1 1/4 BSPP<br>1 1/2 BSPP<br>2 BSPP                                 | Surface spraying, spraying over packings, cleaning and washing process, chemical process engineering, cooling of gaseous fluids and solids, water treatment.  Very uniform spray pattern.                                    | 37       |
|                              | 403        | 90°<br>120°               | 400.00 – 1250.00                        | 2 1/2 BSPP<br>3 BSPP<br>3 1/2 BSPP<br>4 BSPP                       | Surface spraying, spraying over packings, chemical process engineering, cooling of gaseous fluids and solids.  Very uniform spray pattern.                                                                                   | 38       |

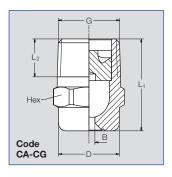
| Tangential-flow full cone nozzles | Series     | A                  | <b>v</b> [I/min]<br>at <b>p =</b> 2 bar | Connection                                             | Application/<br>Design                                                                                                                                                                                                                                               | Page     |
|-----------------------------------|------------|--------------------|-----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                   | 422<br>423 | 60°<br>90°<br>120° | 1.00 – 100.00                           | 1/4 BSPT<br>3/8 BSPT<br>1/2 BSPT<br>3/4 BSPT<br>1 BSPT | Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions, continuous casting, foam control.  Without swirl inserts, non-clogging. Stable spray angle. Uniform spray. | 39<br>40 |

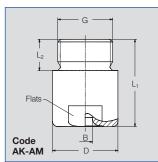
Series 490 / 491





Non-clogging nozzle design. Stable spray angle. Particularly even liquid distribution.


Applications:
Cleaning and washing
processes, surface spraying,
Container cleaning, foam
precipitation, degassing of
liquids.






Series 490/491 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD).

Nozzles of series 490/491 replace series 460/461 which are still available on request.





| Code |          | Dimen          | sions [mn      | n]   |           | Weight |
|------|----------|----------------|----------------|------|-----------|--------|
| Code | G        | L <sub>1</sub> | L <sub>2</sub> | D    | Hex/Flats | Brass  |
| CA   | 1/8 BSPT | 18.0           | 6.5            | 10.0 | 11        | 13 g   |
| CC   | 1/4 BSPT | 22.0           | 10.0           | 13.0 | 14        | 16 g   |
| CE   | 3/8 BSPT | 24.5           | 10.0           | 16.0 | 17        | 30 g   |
| CG   | 1/2 BSPT | 32.5           | 13.0           | 21.0 | 22        | 60 g   |
| CG   | 1/2 BSPT | 43.5           | 13.0           | 21.0 | 22        | 85 g   |
| AK   | 3/4 BSPP | 42.0           | 15.0           | 32.0 | 27        | 190 g  |
| AM   | 1 BSPP   | 56.0           | 17.0           | 40.0 | 36        | 350 g  |

Subject to technical modification.

In a critical installation situation, please ask for the exact dimensions.

| Spray |                    |        | -     | Orderir  | ng no.   |          |          |          |        | В            | Е            |       |                |       | <b>V</b> [l/min] |       |       |       |                  | diameter         |
|-------|--------------------|--------|-------|----------|----------|----------|----------|----------|--------|--------------|--------------|-------|----------------|-------|------------------|-------|-------|-------|------------------|------------------|
| angle |                    | Mat    | . no. |          |          | Co       | de       |          |        | Ø<br>[mm]    | Ø<br>[mm]    |       |                |       | <b>V</b> [[/]]   |       |       |       |                  | D<br>=2 bar      |
| 大     |                    | 1Y     | 30    |          |          |          |          |          |        | [111111]     | [11111]      |       |                |       | <b>p</b> [bar]   |       |       |       | at p=            | 2 500            |
|       | Туре               | SS     |       | PT       | F        | PT       | PT       | ЪР       |        |              |              |       |                |       |                  |       |       |       | <b>E</b>         | $\geq$           |
|       |                    | 316L S | Brass | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPP | 1 BSPP |              |              | 0.5   | 1.0            | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | H =<br>200<br>mm | H =<br>500<br>mm |
| 45°   | 490.403            | 0      | 0     | CA       | -        | -        | -        | -        | -      | 1.25         | 1.25         | 0.57  | 0.76           | 1.00  | 1.18             | 1.44  | 1.65  | 1.90  | 160              | 400              |
| "     | 490.523            | 0      | -     | CA       | -        | -        | -        | -        | -      | 1.70         | 1.70         | 1.15  | 1.52           | 2.00  | 2.35             | 2.89  | 3.30  | 3.81  | 160              | 400              |
|       | 490.603            | 0      | -     | -        | CC       | -        | -        | -        | -      | 2.00         | 2.00         | 1.81  | 2.39           | 3.15  | 3.70             | 4.54  | 5.20  | 6.00  | 160              | 400              |
|       | 490.643            | -      | 0     | -        | -        | CE       | -        | -        | -      | 2.45         | 2.45         | 2.30  | 3.03           | 4.00  | 4.70             | 5.77  | 6.60  | 7.61  | 160              | 400              |
| 60°   | 490.404            | 0      | -     | CA       | -        | -        | -        | -        | -      | 1.15         | 1.15         | 0.57  | 0.76           | 1.00  | 1.18             | 1.44  | 1.65  | 1.90  | 220              | 560              |
|       | 490.444            | 0      | -     | CA       | -        | -        | -        | -        | -      | 1.25         | 1.25         | 0.72  | 0.95           | 1.25  | 1.47             | 1.80  | 2.06  | 2.38  | 220              | 560              |
|       | 490.484            | 0      | -     | CA       | -        | -        | -        | -        | -      | 1.45         | 1.45         | 0.92  | 1.21           | 1.60  | 1.88             | 2.31  | 2.64  | 3.05  | 220              | 560              |
|       | 490.524            | 0      | -     | CA       | -        | -        | -        | -        | -      | 1.60         | 1.60         | 1.15  | 1.52           | 2.00  | 2.35             | 2.89  | 3.30  | 3.81  | 220              | 560              |
|       | 490.604            | 0      | 0     | CA       | -        | -        | -        | -        | -      | 2.05         | 2.05         | 1.81  | 2.39           | 3.15  | 3.70             | 4.54  | 5.20  | 6.00  | 220              | 560              |
|       | 490.644            | 0      | -     | -        | CC       | -        | -        | -        | -      | 2.30         | 2.30         | 2.30  | 3.03           | 4.00  | 4.70             | 5.77  | 6.60  | 7.61  | 220              | 560              |
|       | 490.684            | 0      | -     | -        | CC       | -        | -        | -        | -      | 2.60         | 2.60         | 2.87  | 3.79           | 5.00  | 5.88             | 7.21  | 8.25  | 9.52  | 220              | 560              |
|       | 490.724            | 0      | 0     | -        | CC       | -        | -        | -        | -      | 2.95         | 2.80         | 3.62  | 4.77           | 6.30  | 7.41             | 9.09  | 10.40 | 11.99 | 220              | 560              |
|       | 490.764            | 0      | 0     | -        | -        | CE       | -        | -        | -      | 3.25         | 3.25         | 4.59  | 6.06           | 8.00  | 9.41             | 11.54 | 13.20 | 15.22 | 220              | 560              |
|       | 490.804            | 0      | 0     | -        | -        | CE       | -        | -        | -      | 3.70         | 3.70         | 5.74  | 7.58           | 10.00 | 11.76            | 14.43 | 16.51 | 19.04 | 220              | 560              |
|       | 490.844            | 0      | -     | -        | -        | -        | CG       | -        | -      | 4.05         | 4.05         | 7.18  | 9.47           | 12.50 | 14.70            | 18.03 | 20.63 | 23.80 | 220              | 560              |
|       | 490.884<br>490.924 | 0      | 0     | -        | -        | -        | CG       | -<br>AK  | -      | 4.65<br>5.20 | 4.65<br>5.20 | 9.19  | 12.13<br>15.16 | 16.00 | 18.82<br>23.52   | 23.08 | 26.41 | 30.46 | 220              | 560<br>560       |
|       | 490.924<br>490.964 | 0      | -     | -        | -        |          | -        | AK       |        | 5.20         | 5.20         | 14.36 | 18.95          | 25.00 | 23.52            | 36.07 | 41.26 | 47.59 | 220              | 560              |
|       | 490.904            | 0      | 0     | _        |          |          | _        | AK       | AM     | 7.25         | 7.25         | 22.97 | 30.31          | 40.00 | 47.04            | 57.71 | 66.02 | 76.15 | 220              | 560              |
|       | 491.044            | 0      | 0     | _        |          |          | _        | _        | AM     | 8.15         | 8.15         | 28.72 | 37.89          | 50.00 | 58.80            | 72.14 | 82.53 | 95.18 | 220              | 560              |

 $B = bore diameter \cdot E = Narrowest free cross section$ 

Continued on next page.



Series 490 / 491



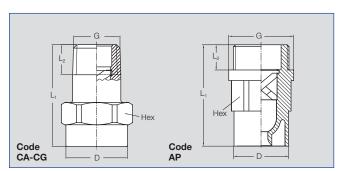


| Spray |                    |         |       | Orderi   | ng no.   |          |          |          |        | В            | Е            |              |       |                | steri / · · ·    |                |        |        | Spray c          | liameter         |
|-------|--------------------|---------|-------|----------|----------|----------|----------|----------|--------|--------------|--------------|--------------|-------|----------------|------------------|----------------|--------|--------|------------------|------------------|
| angle |                    | Mat     | . no. |          |          | Co       | ode      |          |        | Ø            | , Ø          |              |       |                | <b>V</b> [I/min] |                |        |        | _                |                  |
|       |                    | 1Y      | 30    |          |          |          |          |          |        | [mm]         | [mm]         |              |       |                | <b>p</b> [bar]   |                |        |        | at p=            | 2 bar            |
|       | Type               | W       |       | F        | <br>     | <br>     | <br>     | <u>6</u> | _      |              |              |              |       |                |                  |                |        |        |                  |                  |
|       |                    | 316L SS | Brass | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPP | 1 BSPP |              |              | 0.5          | 1.0   | 2.0            | 3.0              | 5.0            | 7.0    | 10.0   | H =<br>200<br>mm | H =<br>500<br>mm |
| 90°   | 490.406            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.20         | 1.20         | 0.57         | 0.76  | 1.00           | 1.18             | 1.44           | 1.65   | 1.90   | 380              | 860              |
| "     | 490.446            | -       | 0     | CA       | -        | -        | -        | -        | -      | 1.30         | 1.30         | 0.72         | 0.95  | 1.25           | 1.47             | 1.80           | 2.06   | 2.38   | 380              | 860              |
|       | 490.486            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.45         | 1.45         | 0.92         | 1.21  | 1.60           | 1.88             | 2.31           | 2.64   | 3.05   | 380              | 860              |
|       | 490.606            | 0       | -     | CA       | -        | -        | -        | -        | -      | 2.10         | 2.05         | 1.81         | 2.39  | 3.15           | 3.70             | 4.54           | 5.20   | 6.00   | 380              | 860              |
|       | 490.646            | 0       | -     | -        | CC       | -        | -        | -        | -      | 2.40         | 2.40         | 2.30         | 3.03  | 4.00           | 4.70             | 5.77           | 6.60   | 7.61   | 390              | 960              |
|       | 490.686            | 0       | -     | -        | CC       | -        | -        | -        | -      | 2.70         | 2.70         | 2.87         | 3.79  | 5.00           | 5.88             | 7.21           | 8.25   | 9.52   | 390              | 960              |
|       | 490.726            | 0       | -     | -        | CC       | -        | -        | -        | -      | 3.20         | 2.80         | 3.62         | 4.77  | 6.30           | 7.41             | 9.09           | 10.40  | 11.99  | 390              | 960              |
|       | 490.766            | 0       | -     | -        | -        | CE       | -        | -        | -      | 3.40         | 3.40         | 4.59         | 6.06  | 8.00           | 9.41             | 11.54          | 13.20  | 15.22  | 390              | 960              |
|       | 490.806            | 0       | -     | -        | -        | CE       | -        | -        | -      | 3.90         | 3.90         | 5.74         | 7.58  | 10.00          | 11.76            | 14.43          | 16.51  | 19.04  | 390              | 960              |
|       | 490.846            | 0       | -     | -        | -        | CE       | -        | -        | -      | 4.65         | 4.00         | 7.18         | 9.47  | 12.50          | 14.70            | 18.03          | 20.63  | 23.80  | 390              | 960              |
|       | 490.886            | 0       | 0     | -        | -        | -        | CG       | -        | -      | 5.45         | 4.50         | 9.19         | 12.13 | 16.00          | 18.82            | 23.08          | 26.41  | 30.46  | 390              | 960              |
|       | 490.926            | 0       | -     | -        | -        | -        | CG       | -        | -      | 5.90         | 4.50         | 11.49        | 15.16 | 20.00          | 23.52            | 28.85          | 33.01  | 38.07  | 390              | 960              |
|       | 490.966            | 0       | -     | -        | -        | -        | CG       | -        | -      | 6.55         | 4.85         | 14.36        | 18.95 | 25.00          | 29.40            | 36.07          | 41.26  | 47.59  | 390              | 960              |
|       | 491.086            | 0       | 0     | -        | -        | -        | -        | -        | AM     | 9.45         | 7.25         | 28.72        | 37.89 | 50.00          | 58.80            | 72.14          | 82.53  | 95.18  | 390              | 960              |
|       | 491.126            | 0       | -     | -        | -        | -        | -        | -        | AM     | 10.40        | 8.00         | 36.18        | 47.75 | 63.00          | 74.09            | 90.89          | 103.98 | 119.93 | 390              | 960              |
|       | 491.146            | 0       | -     | -        | -        | -        | -        | -        | AM     | 11.00        | 7.50         | 40.78        | 53.81 | 71.00          | 83.50            | 102.43         | 117.19 | 135.16 | 390              | 960              |
| 120°  | 490.368            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 0.85         | 0.65         | 0.36         | 0.48  | 0.63           | 0.74             | 0.91           | 1.04   | 1.20   | 680              | 1220             |
|       | 490.408            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.20         | 1.20         | 0.57         | 0.76  | 1.00           | 1.18             | 1.44           | 1.65   | 1.90   | 680              | 1220             |
|       | 490.448            | -       | 0     | CA       | -        | -        | -        | -        | -      | 1.30         | 1.30         | 0.72         | 0.95  | 1.25           | 1.47             | 1.80           | 2.06   | 2.38   | 680              | 1220             |
|       | 490.488            | 0       | -     | CA       | -        | -        | -        | -        | -      | 1.45         | 1.45         | 0.92         | 1.21  | 1.60           | 1.88             | 2.31           | 2.64   | 3.05   | 680              | 1220             |
|       | 490.528            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.70         | 1.70         | 1.15         | 1.52  | 2.00           | 2.35             | 2.89           | 3.30   | 3.81   | 680              | 1220             |
|       | 490.568            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 1.90         | 1.90         | 1.44         | 1.89  | 2.50           | 2.94             | 3.61           | 4.13   | 4.76   | 680              | 1220             |
|       | 490.608            | 0       | 0     | CA       | -        | -        | -        | -        | -      | 2.10         | 2.05         | 1.81         | 2.39  | 3.15           | 3.70             | 4.54           | 5.20   | 6.00   | 680              | 1220             |
|       | 490.648            | 0       | 0     | -        | CC       | -        | -        | -        | -      | 2.40         | 2.40         | 2.30         | 3.03  | 4.00           | 4.70             | 5.77           | 6.60   | 7.61   | 680              | 1330             |
|       | 490.688            | 0       | 0     | -        | CC       | -        | -        | -        | -      | 2.75         | 2.75         | 2.87         | 3.79  | 5.00           | 5.88             | 7.21           | 8.25   | 9.52   | 680              | 1330             |
|       | 490.728            | 0       | 0     | -        | CC       | -<br>CE  | -        | -        | -      | 3.20         | 2.80         | 3.62         | 4.77  | 6.30           | 7.41             | 9.09           | 10.40  | 11.99  | 680              | 1330             |
|       | 490.768            | 0       | 0     | -        | -        |          | -        | -        | -      | 3.45         | 3.45         | 4.59         | 6.44  | 8.00           | 9.41             | 11.54          | 13.20  | 15.22  | 680              | 1330             |
|       | 490.808            | 0       | 0     | -        | -        | CE       | -        | -        | -      | 3.90         | 3.90         | 5.74         | 7.58  | 10.00          | 11.76            | 14.43          | 16.51  | 19.04  | 680              | 1330             |
|       | 490.848<br>490.888 | 0       | 0     | -        | -        | - CE     | -<br>CG  | -        | -      | 4.70<br>5.10 | 4.00<br>4.50 | 7.18<br>9.19 | 9.47  | 12.50<br>16.00 | 14.70<br>18.82   | 18.03<br>23.08 | 20.63  | 23.80  | 680<br>680       | 1330             |
|       | 490.000            | 0       | -     | _        | -        | -        | CG       | -        | _      | 5.10         | 4.75         | 11.49        | 15.16 | 20.00          | 23.52            | 28.85          | 33.01  | 38.07  | 680              | 1330             |
|       | 490.928            | 0       | 0     | -        | -        | -        | CG       | -        | -      | 6.65         | 4.75         | 14.36        | 18.95 | 25.00          | 29.40            | 36.07          | 41.26  | 47.59  | 680              | 1330             |
|       | 490.966            | 0       | 0     |          | _        | _        | -        | AK       | _      | 9.20         | 5.85         | 22.97        | 30.31 | 40.00          | 47.04            | 57.71          | 66.02  | 76.15  | 680              | 1330             |
|       | 491.128            | 0       | _     | _        | _        | _        | _        | - AN     | AM     | 10.80        | 7.75         | 36.18        | 47.75 | 63.00          | 74.09            | 90.89          | 103.98 | 119.93 | 680              | 1330             |
|       | 491.148            | 0       |       |          |          |          | _        | _        | AM     | 11.40        | 7.65         | 40.78        | 53.81 | 71.00          | 83.50            |                |        |        | 680              | 1330             |
|       | -101.1TO           |         |       |          |          |          |          |          | - AIVI | 11.40        | 7.00         | +0.70        | 00.01 | 7 1.00         | 00.00            | 102.40         | 117.19 | 100.10 | 000              | 1000             |

 $B = bore diameter \cdot E = Narrowest free cross section$ 

Example Type + Material no. + Code = Ordering no. for ordering: 490.406 + 1Y + CA = 490.406.1Y.CA




### Series 460 / 461



#### Very uniform spray pattern. Large free cross-sections, due to optimized x-style swirl insert.

Applications: Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving of chemical reactions.





| Code | Dimensions [mm] |                |                |      |     |  |  |  |  |  |  |  |  |  |
|------|-----------------|----------------|----------------|------|-----|--|--|--|--|--|--|--|--|--|
| Code | G               | L <sub>1</sub> | L <sub>2</sub> | D    | Hex |  |  |  |  |  |  |  |  |  |
| CA   | 1/8 BSPT        | 22.0           | 6.5            | 13.0 | 14  |  |  |  |  |  |  |  |  |  |
| CC   | 1/4 BSPT        | 22.0           | 9.7            | 13.0 | 14  |  |  |  |  |  |  |  |  |  |
| CE   | 3/8 BSPT        | 30.0           | 10.0           | 17.0 | 17  |  |  |  |  |  |  |  |  |  |
| CG   | 1/2 BSPT        | 43.5           | 13.2           | 22.0 | 22  |  |  |  |  |  |  |  |  |  |
| AP   | 1 1/4 BSPP      | 76.5           | 19.0           | 49.0 | 41  |  |  |  |  |  |  |  |  |  |

Subject to technical modifications. Please enquire about the exact dimensions if the installation situation is critical!

| Spray   |         | (           | Orderin  | g no.    |          |          |         | В         | E         |       |       |       |                  |        |        |        |                  | liameter      |
|---------|---------|-------------|----------|----------|----------|----------|---------|-----------|-----------|-------|-------|-------|------------------|--------|--------|--------|------------------|---------------|
| angle   |         | Mat.<br>no. |          |          | Code     |          |         | Ø<br>[mm] | Ø<br>[mm] |       |       |       | <b>V</b> [l/min] |        |        |        | L                | <u></u>       |
| $\ A\ $ |         | 5E          |          |          |          |          |         |           |           |       | ı     | l     | <b>p</b> [bar]   | ı      |        |        | i E              |               |
|         | Type    |             | F        | F        | F        | F        | BSPP    |           |           |       |       |       |                  |        |        |        | at p=            | 2 bar         |
|         |         | PVDF        | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 1 1/4 B |           |           | 0.5   | 1.0   | 2.0   | 3.0              | 5.0    | 7.0    | 10.0   | H =<br>200<br>mm | H = 500<br>mm |
| 60°     | 460.524 | 0           | CA       | -        | -        | -        | -       | 1.60      | 1.20      | 1.15  | 1.52  | 2.00  | 2.35             | 2.89   | 3.30   | 3.81   | 220              | 560           |
|         | 460.644 | 0           | -        | СС       | -        | -        | -       | 2.40      | 1.90      | 2.30  | 3.03  | 4.00  | 4.70             | 5.77   | 6.60   | 7.61   | 220              | 560           |
| 90°     | 460.326 | 0           | CA       | -        | -        | -        | -       | 0.80      | 0.55      | 0.23  | 0.30  | 0.40  | 0.47             | 0.58   | 0.66   | 0.76   | 380              | 860           |
|         | 460.406 | 0           | CA       | -        | -        | -        | -       | 1.20      | 0.85      | 0.57  | 0.76  | 1.00  | 1.18             | 1.44   | 1.65   | 1.90   | 380              | 860           |
|         | 460.486 | 0           | CA       | -        | -        | -        | -       | 1.45      | 1.20      | 0.92  | 1.21  | 1.60  | 1.88             | 2.31   | 2.64   | 3.05   | 380              | 860           |
|         | 460.606 | 0           | CA       | -        | -        | -        | -       | 2.05      | 1.45      | 1.81  | 2.39  | 3.15  | 3.70             | 4.54   | 5.20   | 6.00   | 380              | 860           |
|         | 460.646 | 0           | -        | CC       | -        | -        | -       | 2.30      | 1.80      | 2.30  | 3.03  | 4.00  | 4.70             | 5.77   | 6.60   | 7.61   | 390              | 960           |
|         | 460.806 | 0           | -        | -        | CE       | -        | -       | 3.70      | 2.70      | 5.74  | 7.58  | 10.00 | 11.76            | 14.43  | 16.51  | 19.04  | 390              | 960           |
|         | 460.886 | 0           | -        | -        | -        | CG       | -       | 4.70      | 3.10      | 9.19  | 12.13 | 16.00 | 18.82            | 23.08  | 26.41  | 30.46  | 390              | 960           |
|         | 460.966 | 0           | -        | -        | -        | CG       | -       | 5.80      | 3.80      | 14.36 | 18.95 | 25.00 | 29.40            | 36.07  | 41.26  | 47.59  | 390              | 960           |
|         | 461.146 | 0           | -        | -        | -        | -        | AP      | 9.90      | 6.70      | 40.78 | 53.81 | 71.00 | 83.50            | 102.43 | 117.19 | 135.16 | 390              | 960           |

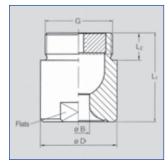
 $\mathsf{B} = \mathsf{Bore} \ \mathsf{diameter} \cdot \mathsf{E} = \mathsf{Narrowest} \ \mathsf{free} \ \mathsf{cross} \ \mathsf{section}$ 

Example Type + Material no. + Code = Ordering no. for ordering: 460.524 + 5E + CA = 460.524.5E.CA



### **Axial-flow full cone nozzles**

## Series 405




#### Very uniform spray pattern.

Applications:

Surface spraying, spraying over packings, cleaning and washing process, chemical process engineering, cooling of gaseous fluids and solids, water treatment.





|            | Dimensions [mm]                         |    |    |    |        |  |  |  |  |  |  |  |
|------------|-----------------------------------------|----|----|----|--------|--|--|--|--|--|--|--|
| G          | G L <sub>1</sub> L <sub>2</sub> D Flats |    |    |    |        |  |  |  |  |  |  |  |
| 1 1/4 BSPP | 1 1/4 BSPP 50 19 49 41                  |    |    |    |        |  |  |  |  |  |  |  |
| 1 1/2 BSPP | 60                                      | 19 | 59 | 50 | 920 g  |  |  |  |  |  |  |  |
| 2 BSPP     | 78                                      | 24 | 68 | 60 | 1550 g |  |  |  |  |  |  |  |

| Spray<br>angle | Orde    | ering n<br>Mat.<br>no. | 0.         | Code       |        | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |     |     | <b>V</b> [1/ | min]     |     |     | diame           | ray<br>eter D<br>: 2 bar |
|----------------|---------|------------------------|------------|------------|--------|----------------|----------------|-----|-----|--------------|----------|-----|-----|-----------------|--------------------------|
|                | T       | 1Y                     |            |            |        |                |                |     |     |              | <u>E</u> |     |     |                 |                          |
|                | Туре    | 316L SS                | 1 1/4 BSPP | 1 1/2 BSPP | 2 BSPP |                |                | 0.3 | 0.5 | 1.0          | 2.0      | 3.0 | 5.0 | H =<br>0.5<br>m | H =<br>1<br>m            |
| 90°            | 405.206 | 0                      | AP         | -          | -      | 12.00          | 5.00           | 47  | 57  | 76           | 100      | 118 | 144 | 780             | 1450                     |
|                | 405.286 | 0                      | -          | AR         | -      | 15.20          | 6.20           | 75  | 92  | 121          | 160      | 188 | 231 | 800             | 1550                     |
|                | 405.326 | 0                      | -          | -          | AV     | 17.20          | 7.70           | 94  | 115 | 152          | 200      | 235 | 289 | 850             | 1600                     |
|                | 405.366 | 0                      | -          | -          | AV     | 19.50          | 8.70           | 117 | 144 | 189          | 250      | 294 | 361 | 850             | 1600                     |
|                | 405.406 | 0                      | -          | -          | AV     | 22.00          | 9.50           | 147 | 181 | 239          | 315      | 370 | 454 | 850             | 1600                     |
| 120°           | 405.208 | 0                      | AP         | -          | -      | 12.70          | 5.00           | 47  | 57  | 76           | 100      | 118 | 144 | 1450            | 2600                     |
|                | 405.288 | 0                      | -          | AR         | -      | 16.00          | 6.60           | 75  | 92  | 121          | 160      | 188 | 231 | 1500            | 2700                     |
|                | 405.328 | 0                      | -          | -          | AV     | 17.80          | 7.90           | 94  | 115 | 152          | 200      | 235 | 289 | 1500            | 2800                     |
|                | 405.368 | 0                      | -          | -          | AV     | 20.10          | 8.80           | 117 | 144 | 189          | 250      | 294 | 361 | 1500            | 2800                     |
|                | 405.408 | 0                      | -          | -          | AV     | 22.40          | 9.10           | 147 | 181 | 239          | 315      | 370 | 454 | 1500            | 2800                     |

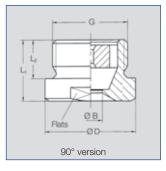
 $B = bore diameter \cdot E = Narrowest free cross section$ 

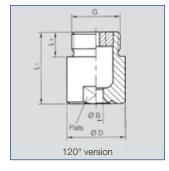
Example Type + Material-no. + Code = Ordering no. for ordering: 405.206 + 1Y AP = 405.206.1Y.AP



#### **Axial-flow full cone nozzles**

### Series 403





# **Very uniform spray pattern.**Applications: Surface spraying, spraying

Surface spraying, spraying over packings, chemical process engineering, cooling of gaseous fluids and solids.









#### 90° version

| Dimensions [mm] |                                                 |    |    |     |     |        |  |  |  |  |  |  |
|-----------------|-------------------------------------------------|----|----|-----|-----|--------|--|--|--|--|--|--|
| Type            | Type BSPP L <sub>1</sub> L <sub>2</sub> D Flats |    |    |     |     |        |  |  |  |  |  |  |
| 403.446/403.486 | 2 1/2                                           | 52 | 27 | 83  | 75  | 1300 g |  |  |  |  |  |  |
| 403.526         | 3                                               | 60 | 30 | 98  | 85  | 2000 g |  |  |  |  |  |  |
| 403.606         | 3                                               | 70 | 32 | 118 | 105 | 3600 g |  |  |  |  |  |  |

120° version

|                 | Dimensions                                      | s [mm] |    |     |     | Weight |  |  |  |  |  |
|-----------------|-------------------------------------------------|--------|----|-----|-----|--------|--|--|--|--|--|
| Type            | Type BSPP L <sub>1</sub> L <sub>2</sub> D Flats |        |    |     |     |        |  |  |  |  |  |
| 403.448/403.488 | 2 1/2                                           | 124    | 27 | 83  | 75  | 3200 g |  |  |  |  |  |
| 403.528         | 3                                               | 153    | 30 | 98  | 85  | 5400 g |  |  |  |  |  |
| 403.608         | 3 1/2                                           | 156    | 32 | 118 | 105 | 8300 g |  |  |  |  |  |
| 403.628         | 4                                               | 165    | 36 | 128 | 110 | 9600 g |  |  |  |  |  |

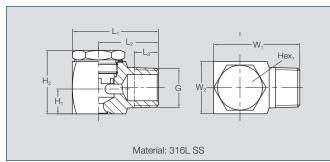
| Spray<br>angle | Ordering no. | Mat.    | B<br>Ø<br>[mm] | E<br>Ø<br>[mm] |     | <b>Ý</b> [l/min] |     |      |      |      |      |              |            |  |
|----------------|--------------|---------|----------------|----------------|-----|------------------|-----|------|------|------|------|--------------|------------|--|
|                |              | 1Y      |                |                |     | <b>p</b> [bar]   |     |      |      |      |      |              |            |  |
|                | Туре         | 316L    |                |                |     |                  |     |      |      |      |      |              | _          |  |
|                |              | AISI 31 |                |                | 0.3 | 0.5              | 1.0 | 2.0  | 3.0  | 5.0  | 7.0  | H =<br>0.5 m | H =<br>1 m |  |
| 90°            | 403.446      | 0       | 25.00          | 12.00          | 187 | 230              | 303 | 400  | 470  | 577  | 660  | 900          | 1700       |  |
|                | 403.486      | 0       | 29.50          | 12.00          | 234 | 287              | 379 | 500  | 588  | 721  | 825  | 900          | 1700       |  |
|                | 403.526      | 0       | 32.00          | 13.80          | 295 | 362              | 477 | 630  | 741  | 909  | 1040 | 900          | 1700       |  |
|                | 403.606      | 0       | 40.00          | 15.00          | 468 | 574              | 758 | 1000 | 1176 | 1443 | 1651 | 980          | 1750       |  |
| 120°           | 403.448      | 0       | 25.50          | 10.00          | 187 | 230              | 303 | 400  | 470  | 577  | 660  | 1500         | 2850       |  |
|                | 403.488      | 0       | 29.50          | 11.00          | 234 | 287              | 379 | 500  | 588  | 721  | 825  | 1500         | 2850       |  |
|                | 403.528      | 0       | 32.00          | 15.00          | 295 | 362              | 477 | 630  | 741  | 909  | 1040 | 1500         | 2850       |  |
|                | 403.608      | 0       | 42.00          | 12.00          | 469 | 574              | 758 | 1000 | 1176 | 1443 | 1651 | 1500         | 2850       |  |
|                | 403.628      | 0       | 45.00          | 15.00          | 585 | 718              | 947 | 1250 | 1470 | 1903 | 2063 | 1600         | 2900       |  |

 $B = bore diameter \cdot E = Narrowest free cross section$ 

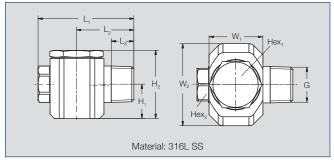
Example Type + Material no. = Ordering no. for ordering: 403.446 + 1Y = 430.446.1Y

## **Tagential-flow full cone nozzles**

#### Series 422 / 423




#### Tangentially arranged liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.


Applications:

Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions, continuous casting, foam control.









| Dimensions [mm] |                |                |                |                |                |                |       |      |                  |        |  |  |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|------|------------------|--------|--|--|
| G               | L <sub>1</sub> | L <sub>2</sub> | L <sub>3</sub> | H <sub>1</sub> | H <sub>2</sub> | W <sub>1</sub> | $W_2$ | Hex₁ | Hex <sub>2</sub> |        |  |  |
| 1/4 BSPT        | 28.0           | 20.0           | 9.7            | 8.0            | 21.0           | 15.6           | 16.0  | 11   | -                | 44 g   |  |  |
| 3/8 BSPT        | 36.0           | 25.0           | 10.1           | 11.0           | 26.7           | 23.2           | 22.0  | 19   | -                | 101 g  |  |  |
| 1/2 BSPT        | 56.0           | 33.5           | 13.2           | 20.0           | 40.0           | 32.0           | 48.0  | 27   | 19               | 370 g  |  |  |
| 3/4 BSPT        | 65.5           | 38.5           | 14.5           | 23.5           | 57.0           | 40.0           | 63.0  | 36   | 27               | 830 g  |  |  |
| 1 BSPT          | 85.0           | 48.5           | 16.8           | 27.3           | 66.0           | 55.0           | 78.0  | 41   | 36               | 1581 g |  |  |

| Spray<br>angle | 0       | rdering     | no.      | 10.      |          |        | B<br>Ø | E<br>Ø |                |       | <b>V</b> [I/ | min]   |        |        |                  | liameter<br>at |
|----------------|---------|-------------|----------|----------|----------|--------|--------|--------|----------------|-------|--------------|--------|--------|--------|------------------|----------------|
| ungio          |         | Mat.<br>no. |          | Co       | de       |        | [mm]   | [mm]   |                |       |              |        |        |        | p = 1-           | 10 bar         |
|                |         | 1Y          |          |          |          |        |        |        | <b>p</b> [bar] |       |              |        |        |        |                  | <b>2</b>       |
|                | Type    |             |          |          |          |        |        |        |                |       |              |        |        |        |                  |                |
|                |         | 316L SS     | 3/8 BSPT | 1/2 BSPT | 3/4 BSPT | 1 BSPT |        |        | 0.5            | 1.0   | 2.0          | 3.0    | 5.0    | 10.0   | H =<br>200<br>mm | H = 500 mm     |
| 90°            | 422.606 | 0           | CE       | -        | -        | -      | 2.60   | 2.50   | 1.57           | 2.23  | 3.15         | 3.86   | 4.98   | 7.04   | 380              | 860            |
|                | 422.766 | 0           | CE       | -        | -        | -      | 4.15   | 4.10   | 4.00           | 5.66  | 8.00         | 9.80   | 12.65  | 17.89  | 390              | 960            |
|                | 422.886 | 0           | CE       | -        | -        | -      | 5.80   | 5.70   | 8.00           | 11.31 | 16.00        | 19.60  | 25.30  | 35.78  | 390              | 960            |
| 120°           | 422.808 | 0           | CE       | -        | -        | -      | 4.65   | 4.60   | 5.00           | 7.07  | 10.00        | 12.25  | 15.81  | 22.36  | 680              | 1600           |
|                | 422.848 | 0           | CE       | -        | -        | -      | 5.20   | 5.10   | 6.25           | 8.84  | 12.50        | 15.31  | 19.76  | 27.95  | 680              | 1600           |
|                | 422.928 | 0           | -        | CG       | -        | -      | 7.30   | 7.30   | 10.00          | 14.14 | 20.00        | 24.49  | 31.62  | 44.72  | 680              | 1600           |
|                | 422.968 | 0           | -        | CG       | -        | -      | 8.00   | 8.00   | 12.50          | 17.68 | 25.00        | 30.62  | 39.53  | 55.90  | 680              | 1600           |
|                | 423.008 | 0           | -        | CG       | -        | -      | 8.70   | 8.70   | 15.75          | 22.27 | 31.50        | 38.88  | 49.81  | 70.44  | 680              | 1600           |
|                | 423.128 | 0           | -        | -        | CK       | -      | 12.70  | 12.30  | 31.50          | 44.55 | 63.00        | 77.16  | 99.61  | 140.87 | 680              | 1600           |
|                | 423.208 | 0           | -        | -        | -        | СМ     | 19.00  | 16.00  | 50.00          | 70.71 | 100.00       | 122.47 | 158.11 | 223.61 | 680              | 1600           |

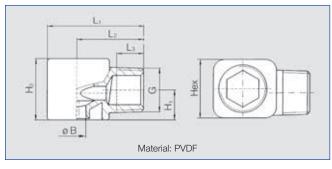
 $\mathsf{B} = \mathsf{bore} \ \mathsf{diameter} \cdot \mathsf{E} = \mathsf{Narrowest} \ \mathsf{free} \ \mathsf{cross} \ \mathsf{section}$ 

Example Type + Material-no. + Code = Ordering no. for ordering: 422.606 + 1Y CE = 422.606.1Y.CE



## **Tangential-flow full cone nozzles**

**Plastic version** 


Series 422 / 423

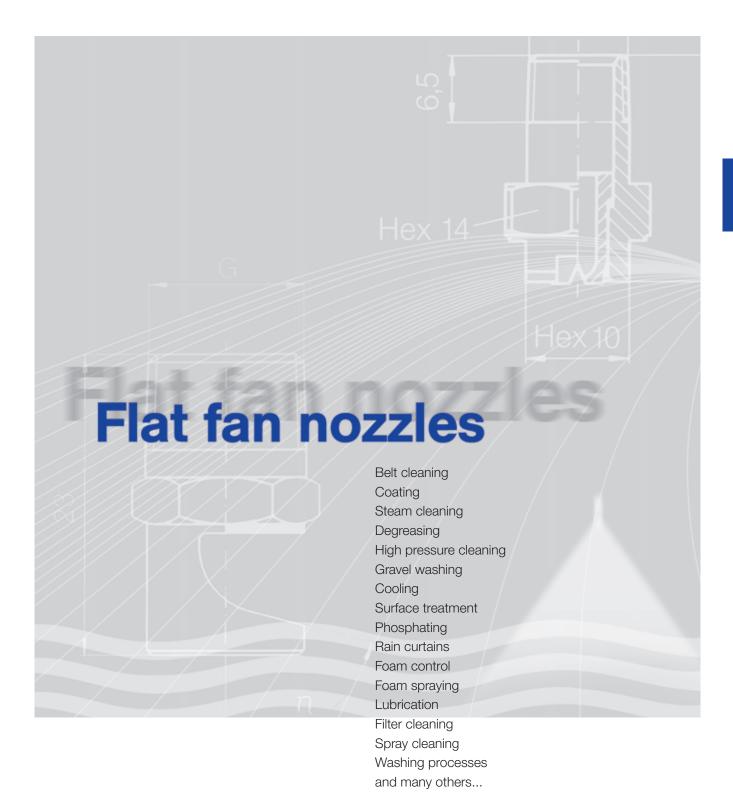


# Tangentially arranged liquid supply. Without swirl inserts. Non-clogging. Stable spray angle. Uniform spray.

Applications: Cleaning and washing process, cooling of gaseous fluids and solids, surface spraying, spraying onto mats in air washers, improving on chemical reactions, foam control.






| Dimensions [mm] |                                                                                  |      |      |      |      |      |      |  |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|--|--|--|
| G               | G L <sub>1</sub> L <sub>2</sub> L <sub>3</sub> H <sub>1</sub> H <sub>2</sub> Hex |      |      |      |      |      |      |  |  |  |  |  |  |  |
| 1/4 BSPT        | 28.0                                                                             | 20.0 | 9.8  | 8.0  | 16.0 | 16.0 | 7 g  |  |  |  |  |  |  |  |
| 3/8 BSPT        | 36.0                                                                             | 25.0 | 10.1 | 11.2 | 23.0 | 22.0 | 16 g |  |  |  |  |  |  |  |
| 1/2 BSPT        | 49.5                                                                             | 33.5 | 13.2 | 19.2 | 38.0 | 32.0 | 40 g |  |  |  |  |  |  |  |
| 3/4 BSPT        | 58.5                                                                             | 38.5 | 18.5 | 24.5 | 50.0 | 41.0 | 50 g |  |  |  |  |  |  |  |

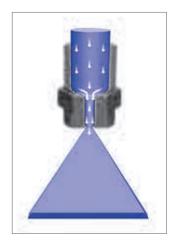
| Spray | 0       | rdering     | no.      |          |          |          | B<br>Ø | E<br>Ø |       |                | <b>V</b> [l/ | min]  |       |        | Spray d          |                  |
|-------|---------|-------------|----------|----------|----------|----------|--------|--------|-------|----------------|--------------|-------|-------|--------|------------------|------------------|
| angle |         | Mat.<br>no. |          | Co       | de       |          | [mm]   | [mm]   |       | <b>p</b> [bar] |              |       |       |        |                  | 10 bar           |
|       | Туре    | 5E          |          |          |          |          |        |        |       |                |              |       |       |        |                  |                  |
|       |         | PVDF        | 1/4 BSPT | 3/8 BSPT | 1/2 BSPT | 3/4 BSPT |        |        | 0.5   | 1.0            | 2.0          | 3.0   | 5.0   | 10.0   | H =<br>200<br>mm | H =<br>500<br>mm |
| 60°   | 422.724 | 0           | -        | CE       | -        | -        | 3.60   | 3.60   | 3.15  | 4.45           | 6.30         | 7.72  | 9.96  | 14.09  | 225              | 510              |
| 90°   | 422.406 | 0           | CC       | -        | -        | -        | 1.50   | 1.45   | 0.50  | 0.71           | 1.00         | 1.22  | 1.58  | 2.24   | 380              | 860              |
|       | 422.566 | 0           | CC       | -        | -        | -        | 2.30   | 2.20   | 1.25  | 1.77           | 2.50         | 3.06  | 3.95  | 5.59   | 380              | 860              |
|       | 422.726 | 0           | -        | CE       | -        | -        | 3.70   | 3.60   | 3.15  | 4.45           | 6.30         | 7.72  | 9.96  | 14.09  | 390              | 960              |
|       | 422.806 | 0           | -        | CE       | -        | -        | 4.65   | 4.60   | 5.00  | 7.07           | 10.00        | 12.25 | 15.81 | 22.36  | 390              | 960              |
|       | 422.886 | 0           | -        | CE       | -        | -        | 5.80   | 6.00   | 8.00  | 11.31          | 16.00        | 19.60 | 25.30 | 35.78  | 390              | 960              |
|       | 423.006 | 0           | -        | -        | CG       | -        | 8.70   | 8.70   | 15.75 | 22.27          | 31.50        | 38.58 | 49.81 | 70.44  | 390              | 960              |
| 120°  | 422.408 | 0           | CC       | -        | -        | -        | 1.50   | 1.45   | 0.50  | 0.71           | 1.00         | 1.22  | 1.58  | 2.24   | 680              | 1220             |
|       | 422.568 | 0           | CC       | -        | -        | -        | 2.40   | 2.40   | 1.25  | 1.77           | 2.50         | 3.06  | 3.95  | 5.59   | 680              | 1220             |
|       | 422.728 | 0           | -        | CE       | -        | -        | 4.00   | 3.90   | 3.15  | 4.45           | 6.30         | 7.72  | 9.96  | 14.09  | 680              | 1600             |
|       | 422.888 | 0           | -        | CE       | -        | -        | 6.60   | 6.00   | 8.00  | 11.31          | 16.00        | 19.60 | 25.30 | 35.78  | 680              | 1600             |
|       | 423.008 | 0           | -        | -        | CG       | -        | 8.70   | 8.70   | 15.75 | 22.27          | 31.50        | 38.58 | 49.81 | 70.44  | 680              | 1600             |
|       | 423.128 | 0           | -        | -        | -        | CK       | 12.70  | 12.30  | 31.50 | 44.55          | 63.00        | 77.16 | 99.61 | 140.87 | 680              | 1600             |

 $B = bore diameter \cdot E = Narrowest free cross section$ 

Example Type + Material-no. + Code = Ordering no. for ordering: 422.724 + 5E CE = 422.724.5E.CE

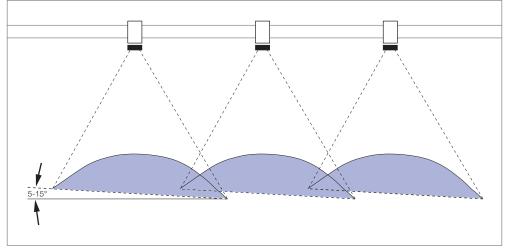




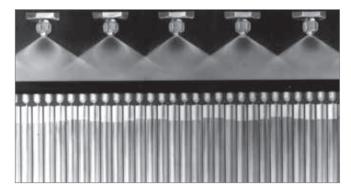



Lechler flat fan nozzles stand for uniform liquid distribution and jet pressures. Particularly powerful jets are generated with spray angles up to 60°. Nozzles with small flow rates are especially suited for humidifying and spraying in general. The flow geometry of the nozzle allows to produce accurate, compact jets, available with different liquid distribution patterns.

Basically, Lechler flat fan nozzles are designed for parabolic liquid distribution. Unaffected by transient pressures, they are suited for universal application. Their performance data are exactly defined. Operational values, such as flow rates, spray width, jet thickness and liquid distribution are readily available for a great variety of feed pressures. There are also special-design nozzles with rectangular or trapezoidal distribution of liquid.


Simple and cost-saving fixing attachments, as for instance dove-tail guides and eyelet clamps, considerably facilitate assembling and aligning of the nozzles.

For all cleaning operations, in steelmaking and in many other fields of surface treatment, in short, wherever powerful, uniform water jets are required, Lechler flat fan nozzles constitute a decisive basis for achieving reliable process results.




The tongue-type nozzle design represents a special kind of flat fan nozzle. With this nozzle type, the flat fan spray pattern is produced by a solid stream, impinging upon and deflecting from an outside deflector plate. As a result, a powerful, sharply delimited flat jet is shaped. The deflector plate has the form of a tongue, which determines the spray angle formation. Due to large free cross-sections, tonguetype nozzles are particularly clog-proof.





Arrangement of nozzles



Total liquid distribution



Liquid distribution single nozzle



| Low-pressure nozzles     | Series               | A                                | <b>v</b> [l/min]<br>at <b>p</b> = 2 bar | Connection                       | Application/<br>Design                                                                                                                                                               | Page     |
|--------------------------|----------------------|----------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                          | 650<br>651           | 45°<br>60°<br>90°<br>120°        | 1.60 – 40.00                            | 1/8 BSPT<br>1/4 BSPT<br>3/8 BSPT | Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.  Standard design with conical, self-sealing thread.                                         | 45<br>46 |
|                          | 632                  | 60°<br>90°                       | 1.00 – 16.00                            | 1/8 BSPT<br>1/4 BSPT             | Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.  Standard design with self-sealing thread.                                                  | 47       |
|                          | 652                  | 20°<br>30°<br>60°<br>90°<br>120° | 0.32 – 12.50                            | Assembly with 3/8" lock nut      | Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.  Easy nozzle changing.  Simple jet alignment.                                               | 48       |
| Belt lubrication nozzles | 652. XXX. 8H / 56. 0 | <b>03</b> 75°                    | 0.05 – 0.11                             | Assembly with 3/8" lock nut      | Belt lubrication, moistening, spraying of food products, moisturization of rollers, oiling, lubrication of metal sheets.  Especially low flow rates.  Parabolic liquid distribution. | 49       |
|                          | 686                  | 90°<br>140°                      | 1.00 – 18.00                            | 1/8 BSPT<br>1/4 BSPT             | Foam control in storage tanks and sewage treatment plants, for cleaning and washing process.  Particularly clog proof.                                                               | 50       |

Continued on next page.

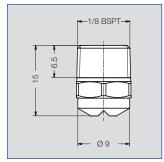
| Low-pressure nozzles | Series |      | <b>v</b> [l/min]<br>at <b>p</b> = 2 bar | Connection                  | Application/<br>Design                                                                                                 | Page |
|----------------------|--------|------|-----------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|------|
| T                    | 684    | 140° | 0.63 – 5.00                             | Assembly with 3/8" lock nut | Foam control in storage tanks and sewage treatment plants, for cleaning and washing process.  Particularly clog-proof. | 51   |

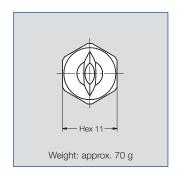
| High pressure nozzles | Series | A                 | <b>v</b> [l/min]<br>at <b>p</b> = 80 bar | Connection            | Application/<br>Design                  | Page |
|-----------------------|--------|-------------------|------------------------------------------|-----------------------|-----------------------------------------|------|
|                       | 602    | 20°<br>45°<br>60° | 4.04 – 18.40                             | 1/4" BSPT<br>NPT 1/4" | High pressure cleaning, steam cleaning. | 52   |

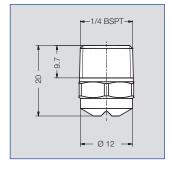
| Nozzle systems for<br>surface technology | Series           | A   | <b>v</b> [l/min]<br>at <b>p =</b> 2 bar | Connection                                                  | Application/<br>Design                                                                                                                                                                           | Page |
|------------------------------------------|------------------|-----|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                          | 676<br>Easy-Clip | 60° | 10.00 – 20.00                           | Assembly with clamp for the following pipe sizes: 1" 1 1/4" | Cleaning problems, phosphating, degreasing, rinsing in surface treatment techniques.  Ball joint, omnidirectional swivelling range of 30°. Simple quick assembling. Easy adjusting and cleaning. | 53   |

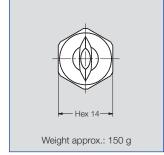


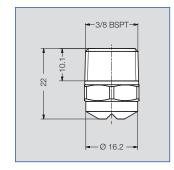
#### Series 650 / 651

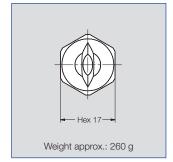




Standard design with conical, self-sealing thread connection. Stable spray angle. Uniform, parabolical distribution of liquid. Spray pipes equiped with these nozzles show an extremely uniform total distribution of liquid.


Applications:


Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.














| Spray | Order    | ing no.     |          |          |          | A         | E         |       |       |       | <b>V</b> [l/min] | -     |       |       |                  | / width          |
|-------|----------|-------------|----------|----------|----------|-----------|-----------|-------|-------|-------|------------------|-------|-------|-------|------------------|------------------|
| angle |          | Mat.<br>no. |          | Code     |          | Ø<br>[mm] | Ø<br>[mm] |       |       |       |                  |       |       |       |                  | = 2 bar          |
|       | _        | 1C          |          |          |          |           |           |       |       |       | <b>p</b> [bar]   |       |       |       | I <u>Z</u>       |                  |
|       | Type     | 304 SS      | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT |           |           | 0.5   | 1.0   | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | H =<br>250<br>mm | H =<br>500<br>mm |
| 45°   | 650. 483 | 0           | CA       | CC       | -        | 1.50      | 1.10      | 0.80* | 1.13  | 1.60  | 1.96             | 2.53  | 2.99  | 3.58  | 180              | 340              |
|       | 650. 563 | 0           | CA       | CC       | -        | 2.00      | 1.40      | 1.25  | 1.77  | 2.50  | 3.06             | 3.95  | 4.68  | 5.59  | 185              | 355              |
|       | 650. 603 | 0           | CA       | CC       | -        | 2.20      | 1.60      | 1.58  | 2.23  | 3.15  | 3.86             | 4.98  | 5.89  | 7.04  | 195              | 370              |
|       | 650. 643 | 0           | CA       | CC       | -        | 2.50      | 1.80      | 2.00  | 2.83  | 4.00  | 4.90             | 6.33  | 7.48  | 8.94  | 195              | 370              |
|       | 650. 723 | 0           | CA       | CC       | -        | 3.00      | 2.40      | 3.15  | 4.46  | 6.30  | 7.72             | 9.96  | 11.79 | 14.09 | 200              | 375              |
|       | 650. 763 | 0           | -        | CC       | -        | 3.50      | 2.60      | 4.00  | 5.66  | 8.00  | 9.80             | 12.65 | 14.97 | 17.89 | 200              | 380              |
|       | 650. 803 | 0           | -        | CC       | -        | 4.00      | 3.00      | 5.00  | 7.07  | 10.00 | 12.25            | 15.81 | 18.71 | 22.36 | 205              | 385              |
|       | 650. 843 | 0           | -        | CC       | CE       | 4.50      | 3.40      | 6.25  | 8.84  | 12.50 | 15.31            | 19.76 | 23.39 | 27.95 | 205              | 385              |
|       | 650. 883 | 0           | -        | CC       | CE       | 5.00      | 3.80      | 8.00  | 11.31 | 16.00 | 19.60            | 25.30 | 29.93 | 35.78 | 220              | 440              |
|       | 650. 923 | 0           | -        | CC       | CE       | 5.50      | 4.20      | 10.00 | 14.14 | 20.00 | 24.50            | 31.62 | 37.42 | 44.72 | 220              | 440              |
|       | 650. 963 | 0           | -        | -        | CE       | 6.00      | 4.40      | 12.50 | 17.68 | 25.00 | 30.62            | 39.53 | 46.77 | 55.90 | 220              | 440              |
|       | 650. 993 | 0           | -        | -        | CE       | 6.50      | 4.80      | 15.00 | 21.21 | 30.00 | 36.74            | 47.43 | 56.12 | 67.08 | 220              | 440              |
|       | 651. 003 | 0           | -        | -        | CE       | 7.00      | 5.20      | 15.75 | 22.27 | 31.50 | 38.57            | 49.80 | 58.92 | 70.43 | 220              | 440              |
|       | 651. 043 | 0           | -        | -        | CE       | 8.00      | 5.90      | 20.00 | 28.28 | 40.00 | 48.99            | 63.25 | 74.83 | 89.44 | 220              | 440              |

 $\label{eq:approx} A = \text{Equivalent bore diameter} \cdot E = \text{Narrowest free cross section} \\ ^* \text{Differing spray pattern}$ 

Subject to technical modifications.

Continued on next page.

Example Material no. + Code = Ordering no. CA = 650.483.1C.CA for ordering: 650.483 + 1C



## Series 650 / 651



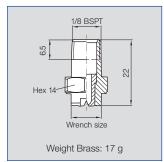
| Spray | Order                | ing no.     |          |          |          | A            | E <b>Ý</b> [l/min] |              |              |                |                |                |       |                | Spray          | width      |
|-------|----------------------|-------------|----------|----------|----------|--------------|--------------------|--------------|--------------|----------------|----------------|----------------|-------|----------------|----------------|------------|
| angle |                      | Mat.<br>no. |          | Code     |          | Ø<br>[mm]    |                    |              |              |                |                |                |       |                |                | = 2 bar    |
|       |                      | 1C          |          |          |          |              |                    |              |              |                | <b>p</b> [bar] |                |       |                | <del>I</del> Z |            |
|       | Туре                 | 304 SS      | 1/8 BSPT | 1/4 BSPT | 3/8 BSPT |              |                    | 0.5          | 1.0          | 2.0            | 3.0            | 5.0            | 7.0   | 10.0           | H = 250<br>mm  | H = 500 mm |
| 60°   | 650. 484             | 0           | CA       | СС       | -        | 1.50         | 1.00               | 0.80*        | 1.13         | 1.60           | 1.96           | 2.53           | 2.99  | 3.58           | 260            | 510        |
| 00    | 650. 564             | 0           | CA       | СС       | -        | 2.00         | 1.30               | 1.25         | 1.77         | 2.50           | 3.06           | 3.95           | 4.68  | 5.59           | 280            | 535        |
|       | 650. 604             | 0           | CA       | CC       | -        | 2.20         | 1.50               | 1.58         | 2.23         | 3.15           | 3.86           | 4.98           | 5.89  | 7.04           | 290            | 550        |
|       | 650. 644             | 0           | CA       | CC       | -        | 2.50         | 1.60               | 2.00         | 2.83         | 4.00           | 4.90           | 6.33           | 7.48  | 8.94           | 295            | 565        |
|       | 650. 724             | 0           | CA       | CC       | -        | 3.00         | 2.10               | 3.15         | 4.46         | 6.30           | 7.72           | 9.96           | 11.79 | 14.09          | 305            | 590        |
|       | 650. 764             | 0           | -        | CC       | -        | 3.50         | 2.30               | 4.00         | 5.66         | 8.00           | 9.80           | 12.65          | 14.97 | 17.89          | 310            | 595        |
|       | 650. 804             | 0           | -        | CC       | -        | 4.00         | 2.60               | 5.00         | 7.07         | 10.00          | 12.25          | 15.81          | 18.71 | 22.36          | 310            | 595        |
|       | 650. 844             | 0           | -        | CC       | CE       | 4.50         | 3.00               | 6.25         | 8.84         | 12.50          | 15.31          | 19.76          | 23.39 | 27.95          | 310            | 590        |
|       | 650. 884             | 0           | -        | CC       | CE       | 5.00         | 3.40               | 8.00         | 11.31        | 16.00          | 19.60          | 25.30          | 29.93 | 35.78          | 300            | 570        |
|       | 650. 924             | 0           | -        | CC       | CE       | 5.50         | 4.10               | 10.00        | 14.14        | 20.00          | 24.50          | 31.62          | 37.42 | 44.72          | 330            | 630        |
|       | 650. 964             | 0           | -        | -        | CE       | 6.00         | 4.20               | 12.50        | 17.68        | 25.00          | 30.62          | 39.53          | 46.77 | 55.90          | 330            | 630        |
|       | 650. 994             | 0           | -        | -        | CE       | 6.50         | 4.40               | 15.00        | 21.21        | 30.00          | 36.74          | 47.43          | 56.12 | 67.08          | 330            | 630        |
|       | 651. 004             | 0           | -        | -        | CE       | 7.00         | 4.80               | 15.75        | 22.27        | 31.50          | 38.57          | 49.80          | 58.92 | 70.43          | 330            | 630        |
|       | 651. 044             | 0           |          |          | CE       | 8.00         | 5.50               | 20.00        | 28.28        | 40.00          | 48.99          | 63.25          | 74.83 | 89.44          | 340            | 640        |
| 90°   | 650. 486             | 0           | CA       | CC       | -        | 1.50         | 0.80               | 0.80*        | 1.13         | 1.60           | 1.96           | 2.53           | 2.99  | 3.58           | 440            | 835        |
|       | 650. 566             | 0           | CA       | CC       | -        | 2.00         | 1.10               | 1.25         | 1.77         | 2.50           | 3.06           | 3.95           | 4.68  | 5.59           | 445            | 850        |
|       | 650. 606             | 0           | CA       | CC       | -        | 2.20         | 1.20               | 1.58         | 2.23         | 3.15           | 3.86           | 4.98           | 5.89  | 7.04           | 450            | 860        |
|       | 650. 646             | 0           | CA       | CC       | -        | 2.50         | 1.30               | 2.00         | 2.83         | 4.00           | 4.90           | 6.33           | 7.48  | 8.94           | 455            | 865        |
|       | 650. 726             | 0           | CA       | CC       | -        | 3.00         | 1.70               | 3.15         | 4.46         | 6.30           | 7.72           | 9.96           | 11.79 | 14.09          | 470            | 885        |
|       | 650. 766             | 0           | -        | CC       | -        | 3.50         | 1.90               | 4.00         | 5.66         | 8.00           | 9.80           | 12.65          | 14.97 | 17.89          | 475            | 890        |
|       | 650. 806<br>650. 846 | 0           | -        | CC       | -<br>CE  | 4.00<br>4.50 | 2.40               | 5.00<br>6.25 | 7.07<br>8.84 | 10.00<br>12.50 | 12.25<br>15.31 | 15.81<br>19.76 | 18.71 | 22.36<br>27.95 | 480<br>480     | 900        |
|       | 650. 886             | 0           | _        | CC       | CE       | 5.00         | 2.40<br>3.10       | 8.00         | 11.31        | 16.00          | 19.60          | 25.30          | 29.93 | 35.78          | 480            | 910        |
|       | 650. 926             | 0           | _        | CC       | CE       | 5.50         | 3.60               | 10.00        | 14.14        | 20.00          | 24.50          | 31.62          | 37.42 | 44.72          | 525            | 1020       |
|       | 650. 966             | 0           | _        | -        | CE       | 6.00         | 3.90               | 12.50        | 17.68        | 25.00          | 30.62          | 39.53          | 46.77 | 55.90          | 525            | 1020       |
|       | 650. 996             | 0           | _        | _        | CE       | 6.50         | 3.70               | 15.00        | 21.21        | 30.00          | 36.74          | 47.43          | 56.12 | 67.08          | 525            | 1020       |
|       | 651. 006             | 0           | _        | _        | CE       | 7.00         | 4.20               | 15.75        | 22.27        | 31.50          | 38.57          | 49.80          | 58.92 | 70.43          | 525            | 1020       |
|       | 651. 046             | 0           | -        | -        | CE       | 8.00         | 4.90               | 20.00        | 28.28        | 40.00          | 48.99          | 63.25          | 74.83 | 89.44          | 525            | 1020       |
| 120°  | 650. 487             | 0           | CA       | СС       | -        | 1.50         | 0.60               | 0.80*        | 1.13         | 1.60           | 1.96           | 2.53           | 2.99  | 3.58           | 680            | 1275       |
| 120   | 650. 567             | 0           | CA       | СС       | -        | 2.00         | 0.90               | 1.25         | 1.77         | 2.50           | 3.06           | 3.95           | 4.68  | 5.59           | 690            | 1285       |
|       | 650. 607             | 0           | CA       | CC       | -        | 2.20         | 1.10               | 1.58         | 2.23         | 3.15           | 3.86           | 4.98           | 5.89  | 7.04           | 700            | 1300       |
|       | 650. 647             | 0           | CA       | CC       | -        | 2.50         | 1.30               | 2.00         | 2.83         | 4.00           | 4.90           | 6.33           | 7.48  | 8.94           | 700            | 1300       |
|       | 650. 727             | 0           | CA       | CC       | -        | 3.00         | 1.60               | 3.15         | 4.46         | 6.30           | 7.72           | 9.96           | 11.79 | 14.09          | 740            | 1360       |
|       | 650. 767             | 0           | -        | CC       | -        | 3.50         | 1.70               | 4.00         | 5.66         | 8.00           | 9.80           | 12.65          | 14.97 | 17.89          | 760            | 1400       |
|       | 650. 807             | 0           | -        | CC       | -        | 4.00         | 2.00               | 5.00         | 7.07         | 10.00          | 12.25          | 15.81          | 18.71 | 22.36          | 790            | 1450       |
|       | 650. 847             | 0           | -        | CC       | CE       | 4.50         | 2.30               | 6.25         | 8.84         | 12.50          | 15.31          | 19.76          | 23.39 | 27.95          | 790            | 1450       |
|       | 650. 887             | 0           | -        | CC       | CE       | 5.00         | 2.60               | 8.00         | 11.31        | 16.00          | 19.60          | 25.30          | 29.93 | 35.78          | 800            | 1460       |
|       | 650. 927             | 0           | -        | CC       | CE       | 5.00         | 2.90               | 10.00        | 14.14        | 20.00          | 24.50          | 31.62          | 37.42 | 44.72          | 800            | 1460       |
|       | 650. 967             | 0           | -        | -        | CE       | 6.00         | 3.20               | 12.50        | 17.68        | 25.00          | 30.62          | 39.53          | 46.77 | 55.90          | 800            | 1460       |
|       | 650. 997             | 0           | -        | -        | CE       | 6.50         | 3.40               | 15.00        | 21.21        | 30.00          | 36.74          | 47.43          | 56.12 | 67.08          | 800            | 1460       |
|       | 651. 007             | 0           | -        | -        | CE       | 7.00         | 3.70               | 15.75        | 22.27        | 31.50          | 38.57          | 49.80          | 58.92 | 70.43          | 800            | 1460       |
|       | 651. 047             | 0           | -        | -        | CE       | 8.00         | 4.40               | 20.00        | 28.28        | 40.00          | 48.99          | 63.25          | 74.83 | 89.44          | 800            | 1460       |

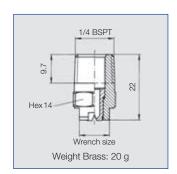
 $\label{eq:A} A = \mbox{Equivalent bore diameter} \cdot E = \mbox{Narrowest free cross section} \\ ^*\mbox{Differing spray pattern} \cdot \mbox{Subject to technical modifications}.$ 

Example Type + Material-no.+ Code = Ordering no. for ordering: 650. 484 + 1C CA = 650. 484. 1C. CA



### Series 632





Standard design with conical, self-sealing thread connection. Stable spray angle. Uniform, parabolical distribution of liquid. Spray pipes equiped with these nozzles show an extremely uniform total distribution of liquid.

Applications:

Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.







| Spray | Ordering no. |      |          |          | В         | Е         |       |       |       |                  |       |       |       | Spray         | width       |
|-------|--------------|------|----------|----------|-----------|-----------|-------|-------|-------|------------------|-------|-------|-------|---------------|-------------|
| angle |              | Mat. | Co       | de       | Ø<br>[mm] | Ø<br>[mm] |       |       |       | <b>V</b> [l/min] |       |       |       | _             | 3<br>:2 bar |
|       |              | 5E   |          |          |           |           |       |       |       | <b>p</b> [bar]   |       |       |       |               |             |
|       | Туре         | PVDF | 1/8 BSPT | 1/4 BSPT |           |           | 0.5   | 1.0   | 2.0   | 3.0              | 5.0   | 7.0   | 10.0  | H = 250<br>mm | H = 500 mm  |
| 60°   | 632, 404     | 0    | CA       | _        | 1.20      | 0.80      | 0.50* | 0.71  | 1.00  | 1.23             | 1.58  | 1.87  | 2.24  | 245           | 485         |
| 00    | 632. 514     | 0    | CA       | СС       | 1.65      | 1.10      | 0.95* | 1.34  | 1.90  | 2.33             | 3.00  | 3.56  | 4.25  | 270           | 520         |
|       | 632. 564     | 0    | -        | СС       | 2.00      | 1.30      | 1.25  | 1.77  | 2.50  | 3.06             | 3.95  | 4.68  | 5.59  | 280           | 535         |
|       | 632. 644     | 0    | -        | CC       | 2.50      | 1.60      | 2.00  | 2.83  | 4.00  | 4.90             | 6.33  | 7.48  | 8.94  | 295           | 565         |
|       | 632. 724     | 0    | -        | CC       | 3.00      | 2.10      | 3.15  | 4.46  | 6.30  | 7.72             | 9.96  | 11.79 | 14.09 | 305           | 590         |
|       | 632. 804     | 0    | -        | CC       | 4.00      | 2.60      | 5.00  | 7.07  | 10.00 | 12.25            | 15.81 | 18.71 | 22.36 | 310           | 595         |
|       | 632. 884     | 0    | -        | CC       | 5.00      | 3.40      | 8.00  | 11.31 | 16.00 | 19.60            | 25.30 | 29.93 | 35.78 | 300           | 570         |
| 90°   | 632. 406     | 0    | CA       | -        | 1.20      | 0.70      | 0.50* | 0.71  | 1.00  | 1.23             | 1.58  | 1.87  | 2.24  | 430           | 820         |
|       | 632. 516     | 0    | CA       | CC       | 1.65      | 0.90      | 0.95* | 1.34  | 1.90  | 2.33             | 3.00  | 3.56  | 4.25  | 440           | 840         |
|       | 632. 566     | 0    | -        | CC       | 2.00      | 1.10      | 1.25  | 1.77  | 2.50  | 3.06             | 3.95  | 4.68  | 5.59  | 445           | 850         |
|       | 632. 646     | 0    | -        | CC       | 2.50      | 1.30      | 2.00  | 2.83  | 4.00  | 4.90             | 6.33  | 7.48  | 8.94  | 455           | 865         |
|       | 632. 726     | 0    | -        | CC       | 3.00      | 1.70      | 3.15  | 4.46  | 6.30  | 7.72             | 9.96  | 11.79 | 14.09 | 470           | 885         |
|       | 632. 806     | 0    | -        | CC       | 4.00      | 2.40      | 5.00  | 7.07  | 10.00 | 12.25            | 15.81 | 18.71 | 22.36 | 480           | 900         |
|       | 632. 886     | 0    | -        | CC       | 5.00      | 3.10      | 8.00  | 11.31 | 16.00 | 19.60            | 25.30 | 29.93 | 35.78 | 480           | 910         |

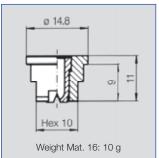
 $A = Equivalent bore diameter \cdot E = Narrowest free cross section$ 

Subject to technical modifications.

Example Type + Material-no.+ Code = Ordering no. for ordering: 632. 404 + 5E CA = 632. 404. 5E. CA

<sup>\*</sup>Differing spray pattern




## Flat fan nozzles for retaining nut Series 652



Assembly with retaining nut. Easy nozzle changing, simple jet alignment. Uniform, parabolic distribution of liquid. Spray pipes equiped with these nozzles show an extremely uniform total liquid distribution.

Applications: Spray cleaning, surface treatment, filter cleaning, belt cleaning, lubricating, coating.

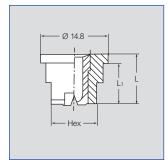




| Spray angle | Ordering no.       | Mat. |            | A<br>Ø       | E<br>Ø       |                |               |              | width        |              |              |            |              |
|-------------|--------------------|------|------------|--------------|--------------|----------------|---------------|--------------|--------------|--------------|--------------|------------|--------------|
|             |                    | 16   | 5 <b>E</b> | [mm]         | [mm]         |                |               | <b>p</b> [k  | <br>par]     |              |              | at p=      | 2 bar        |
|             | Туре               |      |            |              |              |                |               |              |              |              |              | Z          | Z            |
|             | ,,,,,,             | SS   |            |              |              |                |               |              |              |              |              | H =        | <u>→</u> :   |
|             |                    | 303  | PVDF       |              |              | 0.5            | 1.0           | 2.0          | 3.0          | 5.0          | 10.0         | 250<br>mm  | 500<br>mm    |
| 20°         | 652.301            | 0    | -          | 0.70         | 0.60         | 0.16*          | 0.23*         | 0.32         | 0.39         | 0.51         | 0.72         | 65         | 125          |
|             | 652.361            | 0    | -          | 1.00         | 0.80         | 0.31*          | 0.44*         | 0.63         | 0.77         | 1.00         | 1.40         | 65         | 125          |
|             | 652.441<br>652.481 | 0    | -          | 1.35<br>1.50 | 1.10<br>1.20 | 0.62*<br>0.80* | 0.88<br>1.13  | 1.25<br>1.60 | 1.53<br>1.96 | 1.98<br>2.53 | 2.80<br>3.58 | 65<br>65   | 125<br>125   |
|             |                    |      |            |              |              |                |               |              |              |              |              |            |              |
| 30°         | 652.402<br>652.482 | 0    | -          | 1.20<br>1.50 | 0.90         | 0.50*<br>0.80* | 0.71<br>1.13  | 1.00<br>1.60 | 1.23<br>1.96 | 1.58<br>2.53 | 2.24<br>3.58 | 115<br>115 | 230          |
|             | 652,364            |      |            |              |              |                |               |              |              |              |              |            |              |
| 60°         | 652.364<br>652.404 | 0    | 0          | 1.00<br>1.20 | 0.60         | 0.31*<br>0.50* | 0.44*<br>0.71 | 0.63<br>1.00 | 0.77<br>1.23 | 1.00<br>1.58 | 1.40<br>2.24 | 275<br>275 | 525<br>525   |
|             | 652,444            | 0    | 0          | 1.35         | 0.90         | 0.62*          | 0.71          | 1.25         | 1.53         | 1.98         | 2.80         | 280        | 530          |
|             | 652.484            | 0    | 0          | 1.50         | 1.00         | 0.80*          | 1.13          | 1.60         | 1.96         | 2.53         | 3.58         | 280        | 530          |
|             | 652.514            | 0    | 0          | 1.65         | 1.10         | 0.95*          | 1.34          | 1.90         | 2.33         | 3.00         | 4.25         | 280        | 530          |
|             | 652.564            | 0    | 0          | 2.00         | 1.30         | 1.25           | 1.77          | 2.50         | 3.06         | 3.95         | 5.59         | 280        | 525          |
|             | 652.674            | -    | 0          | 2.70         | 1.80         | 2.38           | 3.36          | 4.75         | 5.82         | 7.51         | 10.62        | 275        | 520          |
|             | 652.724            | 0    | 0          | 3.00         | 2.10         | 3.15           | 4.46          | 6.30         | 7.72         | 9.96         | 14.09        | 275        | 520          |
|             | 652.844            | 0    | 0          | 4.50         | 3.00         | 6.25           | 8.84          | 12.50        | 15.31        | 19.76        | 27.95        | 270        | 510          |
| 90°         | 652.306            | -    | 0          | 0.70         | 0.40         | 0.16*          | 0.23*         | 0.32         | 0.39         | 0.51         | 0.72         | 450        | 795          |
|             | 652.336            | -    | 0          | 0.90         | 0.50         | 0.22*          | 0.32*         | 0.45         | 0.55         | 0.71         | 1.01         | 450        | 795          |
|             | 652.366            | 0    | 0          | 1.00         | 0.50         | 0.31*          | 0.44*         | 0.63         | 0.77         | 1.00         | 1.41         | 450        | 795          |
|             | 652.406<br>652.446 | 0    | 0          | 1.20<br>1.35 | 0.70<br>0.80 | 0.50*<br>0.62* | 0.71<br>0.88  | 1.00<br>1.25 | 1.23<br>1.53 | 1.58<br>1.98 | 2.24         | 450<br>450 | 800<br>800   |
|             | 652.486            | 0    | 0          | 1.50         | 0.80         | 0.80*          | 1.13          | 1.60         | 1.96         | 2.53         | 3.58         | 450        | 800          |
|             | 652,516            | -    | 0          | 1.65         | 0.90         | 0.95*          | 1.34          | 1.90         | 2.33         | 3.00         | 4.25         | 450        | 800          |
|             | 652.566            | 0    | Ō          | 2.00         | 1.10         | 1.25           | 1.77          | 2.50         | 3.06         | 3.95         | 5.59         | 450        | 805          |
|             | 652.606            | 0    | 0          | 2.20         | 1.20         | 1.58           | 2.23          | 3.15         | 3.86         | 4.98         | 7.04         | 450        | 805          |
|             | 652.646            | 0    | -          | 2.50         | 1.30         | 2.00           | 2.83          | 4.00         | 4.90         | 6.33         | 8.94         | 450        | 805          |
|             | 652.726            | 0    | 0          | 3.00         | 1.70         | 3.15           | 4.46          | 6.30         | 7.72         | 9.96         | 14.09        | 450        | 810          |
|             | 652.806            | 0    | -          | 4.00         | 2.40         | 5.00           | 7.07          | 10.00        | 12.25        | 15.81        | 22.36        | 450        | 820          |
|             | 652.846            | -    | 0          | 4.50         | 2.40         | 6.25           | 8.84          | 12.50        | 15.31        | 19.76        | 27.95        | 450        | 820          |
| 120°        | 652.337            | -    | 0          | 0.90         | 0.40         | 0.22*          | 0.32*         | 0.45         | 0.55         | 0.71         | 1.01         | 660        | 1260         |
|             | 652.367<br>652.407 | 0    | 0          | 1.00<br>1.20 | 0.50         | 0.31*<br>0.50* | 0.44*<br>0.71 | 0.63<br>1.00 | 0.77<br>1.23 | 1.00<br>1.58 | 1.41<br>2.24 | 660<br>660 | 1265<br>1270 |
|             | 652.447            | 0    | -          | 1.35         | 0.60         | 0.50           | 0.71          | 1.25         | 1.53         | 1.98         | 2.24         | 665        | 1270         |
|             | 652.487            | 0    | 0          | 1.50         | 0.60         | 0.80*          | 1.13          | 1.60         | 1.96         | 2.53         | 3.58         | 665        | 1270         |
|             | 652.567            | 0    | 0          | 2.00         | 0.90         | 1.25           | 1.77          | 2.50         | 3.06         | 3.95         | 5.59         | 670        | 1280         |
|             | 652.607            | -    | 0          | 2.20         | 1.10         | 1.58           | 2.23          | 3.15         | 3.86         | 4.98         | 7.04         | 675        | 1285         |
|             | 652.647            | 0    | -          | 2.50         | 1.30         | 2.00           | 2.83          | 4.00         | 4.90         | 6.33         | 8.94         | 680        | 1295         |
|             | 652.727            | 0    | 0          | 3.00         | 1.60         | 3.15           | 4.46          | 6.30         | 7.72         | 9.96         | 14.09        | 695        | 1315         |
|             | 652.807            | 0    | -          | 4.00         | 2.00         | 5.00           | 7.07          | 10.00        | 12.25        | 15.81        | 22.36        | 705        | 1330         |

A = Equivalent bore diameter  $\cdot$  E = Narrowest free cross section \*Differing spray pattern. Subject to technical modifications.

Example Type + Material no. = Ordering no. for ordering: 652.301 + 16 = 652.301.16




#### Series 652, XXX, 8H / 56, 03

#### Especially low flow rates. Parabolic liquid distribution

Applications: Belt lubrication, moistening, spraying of food products, moisturization of rollers, oiling, lubrication of metal sheets.





| Spray | Ordering | no.     |       | Colour | Е         |        |      |      |      |
|-------|----------|---------|-------|--------|-----------|--------|------|------|------|
| angle |          | Mat     | . no. |        | Ø<br>[mm] |        |      |      |      |
| ║⋏║   |          | 8H.03*  | 56.03 |        | [iiiiii]  |        |      |      |      |
|       | Туре     | SS      |       |        |           |        |      |      |      |
|       | турс     | 303     |       |        |           |        |      |      |      |
|       |          | POM/303 | Σ     |        |           |        |      |      |      |
|       |          | 2       | POM   |        |           | 1.0    | 2.0  | 3.0  | 5.0  |
| 75°   | 652.145  | 0       | 0     | green  | 0.12      | 0.04** | 0.05 | 0.06 | 0.08 |
|       | 652.165  | 0       | -     | black  | 0.14      | 0.05** | 0.07 | 0.08 | 0.10 |
|       | 652.185  | 0       | 0     | red    | 0.16      | 0.06** | 0.08 | 0.10 | 0.13 |
|       | 652.215  | 0       | -     | blue   | 0.20      | 0.08** | 0.11 | 0.14 | 0.18 |

- E = Narrowest free cross section
- Housing POM, nozzle insert 303 SS
- \*\* Differing spray pattern. Subject to technical modifications.

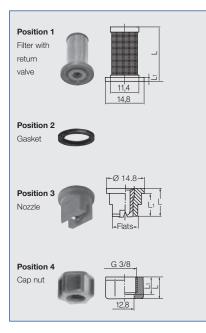
| Pos. | Name         | Ordering no.         | Material    | Colour | Dime | ensions [ |     | **   |
|------|--------------|----------------------|-------------|--------|------|-----------|-----|------|
|      |              |                      |             |        | L    | L1        | Hex | [mm] |
| 1    | Filter with  | 095. 016. 53. 11.00  | PP          | blue   | 21   | 1.5       | -   | 0.08 |
|      | return valve | 095. 016. 53. 14. 63 | PP          | green  | 21   | 1.5       | -   | 0.08 |
| 2    | Gasket       | 065. 240. 55         | PTFE        | -      | -    | -         | -   | -    |
|      | Gasket       | 065. 240. 72         | EWP 210     | -      | -    | -         | -   | -    |
| 3    | Nozzle       | Ordering no.         | POM         | -      | 11   | 9         | -   | -    |
|      | NOZZIE       | see<br>flow tables   | POM/303 SS* | -      | 12   | 10        | -   | -    |
|      | Connut       | 065. 200. 16         | 303 SS      | -      | 13   | 10        | 22  | -    |
| 4    | Cap nut      | 065. 200. 56         | POM         | black  | 14.5 | 11.5      | 22  | -    |

<sup>\*</sup> Housing POM, nozzle insert 303 SS
\*\* Size of mesh

## Operating pressure range:

1 to 5 bar

#### **Recommended operating** pressure:


. 3 bar

#### Viscosity:

The nozzles can be operated with viscous media, e. g. transmission fluid (max. approx. 200 mPas). However the spray angle decreases.

#### Return valve with filter:

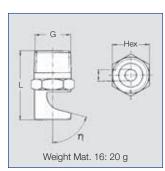
- Prevents dripping and saves medium
- Size of filter mesh: 0.08 mm (200 mesh)
- **095.016.53.11.00** Opening pressure: approx. 0.5 bar Closing pressure: approx. 0.3 bar
- **095.016.53.14.63** Opening pressure: approx. 2.8 bar Closing pressure: approx. 1.6 bar





## **Tongue-type nozzles**

#### Series 686




#### Wide flat fan with a sharply delimited jet pattern. Particularly clog-proof.

Applications:

Foam control in storage tanks and sewage treatment plants, cleaning and washing process, requiring powerful and concentrated water jets.





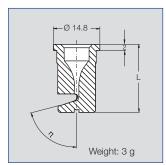
| Spray<br>angle | η   | Orderin  | Mat.   | Cod      | de G     | B<br>Ø<br>[mm] |       | <b>V</b> [l/min] |       |       | Dimer | nsions |       | Spray width B at p=2 bar |
|----------------|-----|----------|--------|----------|----------|----------------|-------|------------------|-------|-------|-------|--------|-------|--------------------------|
|                |     |          | no.    |          |          | [11111]        |       | <b>p</b> [bar]   |       | L [r  | mm]   | Hex    | [mm]  |                          |
|                |     | Туре     | 303 SS | 1/8 BSPT | 1/4 BSPT |                | 1.0   | 2.0              | 5.0   | R 1/8 | R 1/4 | R 1/8  | R 1/4 | H = 250 mm               |
| 90°            | 75° | 686.406  | 0      | CA       | -        | 1.00           | 0.71  | 1.00             | 1.58  | 23    | -     | 11     | -     | 525                      |
|                | 40° | 686. 686 | 0      | -        | СС       | 2.40           | 3.54  | 5.00             | 7.91  | -     | 29    | -      | 14    | 530                      |
| 140°           | 75° | 686. 448 | 0      | -        | СС       | 1.20           | 0.88  | 1.25             | 1.98  | -     | 28    | -      | 14    | 1370                     |
|                |     | 686. 528 | 0      | -        | CC       | 1.50           | 1.41  | 2.00             | 3.16  | 23    | 28    | 11     | 14    | 1370                     |
|                |     | 686. 568 | 0      | -        | CC       | 1.70           | 1.77  | 2.50             | 3.59  | 23    | -     | 11     | -     | 1370                     |
|                |     | 686. 608 | 0      | -        | CC       | 1.90           | 2.23  | 3.15             | 4.98  | 23    | 28    | 11     | 14    | 1370                     |
|                |     | 686. 728 | 0      | -        | CC       | 2.70           | 4.45  | 6.30             | 9.96  | 23    | -     | 11     | -     | 1370                     |
|                |     | 686. 808 | 0      | -        | CC       | 3.40           | 7.07  | 10.00            | 15.81 | 23    | 28    | 11     | 14    | 1370                     |
|                |     | 686. 908 | 0      | -        | CC       | 4.50           | 12.73 | 18.00            | 28.46 |       | 28    | -      | 14    | 1370                     |


B = Bore diameter

Can also be used for air or saturated steam.

Example Type + Material no. + Code = Ordering no. for ordering: 686.406 + 16 CA = 650.406.16.CA




## **Tongue-type nozzles** for retaining nut Series 684



Assembly with retaining nut. Wide flat fan with a sharply delimited spray pattern. Particularly clog-proof. Easy nozzle changing, simple jet alignment.

Applications:
Foam control in storage tanks and sewage treatment plants.
Cleaning and washing process, requiring powerful and concentrated parts in the control of the cont trated water jets.





| Spray angle | η   | Ordering no.                             | Mat.<br>no. | Colour                         | B<br>Ø<br>[mm]           |                               | <b>V</b> [l/min] <b>p</b> [bar] |                              | L<br>[mm]            | Spray width B at p=2 bar     |
|-------------|-----|------------------------------------------|-------------|--------------------------------|--------------------------|-------------------------------|---------------------------------|------------------------------|----------------------|------------------------------|
|             |     | Туре                                     | POM         |                                |                          | 1.0                           | 2.0                             | 5.0                          |                      | H = 250<br>mm                |
| 140°        | 75° | 684.368<br>684.408<br>684.448<br>684.568 | 0 0 0       | yellow<br>blue<br>red<br>white | 0.8<br>1.0<br>1.2<br>1.7 | 0.45*<br>0.71<br>0.88<br>1.77 | 0.63<br>1.00<br>1.25<br>2.50    | 1.00<br>1.58<br>1.98<br>3.95 | 20<br>20<br>20<br>19 | 1360<br>1370<br>1370<br>1370 |
|             |     | 684.688                                  | 0           | green                          | 2.4                      | 3.54                          | 5.00                            | 7.91                         | 17                   | 1370                         |

B = bore diameter
\* Differing spray pattern.

| Example       | Type    | + | Material no. | = | Ordering no. |
|---------------|---------|---|--------------|---|--------------|
| for ordering: | 684.368 | + | 56           | = | 684.368.56   |



## High pressure flat fan nozzles

#### Series 602

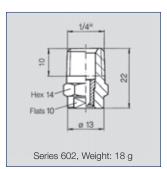


## Sharp uniform flat fan with an extremely narrow jet depth.

Applications:

High pressure cleaners, steam jet cleaners

Materials:


Nozzle body: stainless steel

303 SS

Insert: hardened stainless steel

1.4034 S





| US                       | Nozzle-Code | Flo | ow rate co | ode | А         |       |       |       | <b>*</b> 40/ : 1                |       |       |       |
|--------------------------|-------------|-----|------------|-----|-----------|-------|-------|-------|---------------------------------|-------|-------|-------|
| gal/min.<br>at<br>40 psi | Connection  | [   | Spr<br>ang |     | Ø<br>[mm] |       |       |       | <b>v</b> [l/min] <b>p</b> [bar] |       |       |       |
| 40 psi                   | 1/4"        | 20° | 45°        | 60° |           | 40    | 60    | 80    | 100                             | 120   | 150   | 200   |
|                          |             | 20  |            | 00  |           | _     |       |       |                                 |       |       |       |
| 02                       | 602         | 361 | 363        | 364 | 1.00      | 2.86  | 3.50  | 4.04  | 4.52                            | 4.95  | 5.53  | 6.39  |
| 025                      | 602         | 381 | 383        | 384 | 1.10      | 3.54  | 4.33  | 5.00  | 5.59                            | 6.12  | 6.85  | 7.91  |
| 03                       | 602         | 401 | 403        | 404 | 1.18      | 4.31  | 5.28  | 6.10  | 6.82                            | 7.47  | 8.35  | 9.64  |
| 034                      | 602         | 411 | 413        | 414 | 1.30      | 4.95  | 6.06  | 7.00  | 7.83                            | 8.57  | 9.59  | 11.07 |
| 04                       | 602         | 451 | 453        | 454 | 1.35      | 5.80  | 7.10  | 8.20  | 9.17                            | 10.04 | 11.23 | 12.97 |
| 045                      | 602         | 471 | 473        | 474 | 1.40      | 6.51  | 7.97  | 9.20  | 10.29                           | 11.27 | 12.60 | 14.55 |
| 05                       | 602         | 481 | 483        | 484 | 1.55      | 7.29  | 8.92  | 10.30 | 11.52                           | 12.62 | 14.11 | 16.29 |
| 055                      | 602         | 501 | 503        | 504 | 1.60      | 7.96  | 9.74  | 11.25 | 12.58                           | 13.78 | 15.41 | 17.79 |
| 06                       | 602         | 521 | 523        | 524 | 1.72      | 8.70  | 10.66 | 12.31 | 13.76                           | 15.07 | 16.85 | 19.46 |
| 07                       | 602         | 541 | 543        | 544 | 1.80      | 10.06 | 12.32 | 14.22 | 15.90                           | 17.42 | 19.47 | 22.49 |
| 075                      | 602         | 551 | 553        | 554 | 1.90      | 10.75 | 13.16 | 15.20 | 16.99                           | 18.62 | 20.81 | 24.04 |
| 08                       | 602         | 571 | 573        | 574 | 2.05      | 11.48 | 14.06 | 16.23 | 18.15                           | 19.88 | 22.23 | 25.67 |
| 09                       | 602         | 591 | 593        | 594 | 2.10      | 13.01 | 15.93 | 18.40 | 20.57                           | 22.53 | 25.19 | 29.09 |

A = Equivalent bore diameter

| Connection Code | Connection | p <sub>max</sub> * [bar] |
|-----------------|------------|--------------------------|
| A3.00           | BSPT       | ca. 700                  |

<sup>\*</sup> Only valid for operation at constant pressure

Example Nozzle code + Flow rate code + Connection code = Ordering no.

for ordering: 602 + 361 + A3.00 = 602.361.A3.00
(Flat fan 20°;
4.52 l/min. at 100 bar;
1/4" BSPT)



## Nozzle systems for surface technology

## Easy-Clip nozzle system



Quick and easy assembly with clamp. No tools required. Allround swivelling by 30°. Easy adjustment and cleaning.

Applications:

Degreasing, phosphating in surface treatment.

Materials:

Clamp: Stainless steel 301 SS

Sealing: EPDM

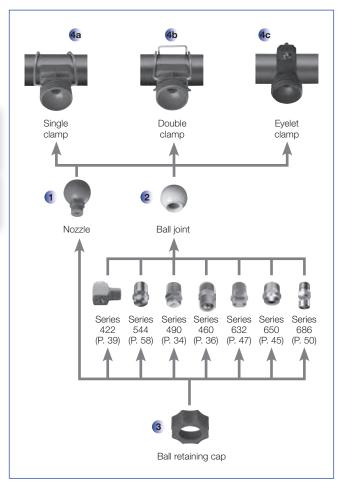
Cylinder pin, Screw and Screw

unit: 316 SS.

Body, ball retainer cap: PP,

reinforced.

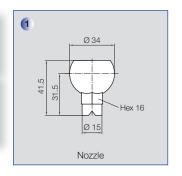
Nozzle, ball joint: PP




#### **Sets**

#### existing of

- Nozzle
- Single clamp for 1 1/4" pipe
- Ball retainer cap


| Ordering no.  | Nozzle<br>colour | A   |                         | <b>v</b> [l/min] <b>p</b> [bar] |       |       |       |
|---------------|------------------|-----|-------------------------|---------------------------------|-------|-------|-------|
|               |                  |     | 0.5                     | 1.0                             | 1.5   | 2.0   | 2.5   |
| 676.804.53.31 | lilac            | 60° | 5.00                    | 7.07                            | 8.66  | 10.00 | 11.18 |
| 676.844.53.31 | yellow           | 60° | 6.25                    | 8.84                            | 10.83 | 12.50 | 13.98 |
| 676.884.53.31 | red              | 60° | 8.00                    | 11.31                           | 13.85 | 16.00 | 17.89 |
| 676.924.53.31 | green            | 60° | 10.00 14.14 17.32 20.00 |                                 | 22.36 |       |       |



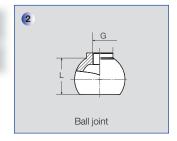
## Components

#### 1 Nozzle

| Ordering no.     | Nozzle<br>colour | A            | <b>V</b> [l/min] <b>p</b> [bar] |       |       |       |       |
|------------------|------------------|--------------|---------------------------------|-------|-------|-------|-------|
|                  |                  |              | 0.5                             | 1.0   | 1.5   | 2.0   | 2.5   |
| 676.804.53.30.01 | lilac            | 60°          | 5.00                            | 7.07  | 8.66  | 10.00 | 11.18 |
| 676.844.53.30.01 | yellow           | 60°          | 6.25                            | 8.84  | 10.83 | 12.50 | 13.98 |
| 676.884.53.30.01 | red              | 60°          | 8.00                            | 11.31 | 13.85 | 16.00 | 17.89 |
| 676.924.53.30.01 | green            | 60°          | 10.00                           | 14.14 | 17.32 | 20.00 | 22.36 |
| 092.080.53.00.01 | grey             | Blind nozzle |                                 |       |       |       |       |






## Nozzle systems for surface technology

## Easy-Clip nozzle system

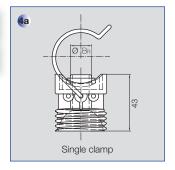



#### 2 Ball joint

| Ordering no.     | Colour | Nozzle<br>connection | L<br>[mm] | For nozzle series            |
|------------------|--------|----------------------|-----------|------------------------------|
| 092.080.53.AD.01 | beige  | 1/4 BSPP             | 32.4      | 422, 460, 490, 544, 632, 686 |
| 092.080.53.AF.01 | beige  | 3/8 BSPP             | 31.4      | 422, 460, 490, 632, 686, 688 |



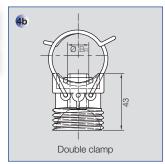
#### 3 Ball retainer cap


| Orderin  | ng no.   |
|----------|----------|
| 092.080. | 53.00.02 |



#### 4a Single clamp

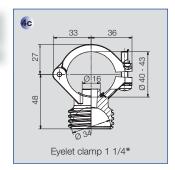
| Ordering no.  | Spigot-Ø BR | Recommended bore-Ø | For Pipe-Ø            |
|---------------|-------------|--------------------|-----------------------|
| 092.080.53.00 | 16.3 mm     | 16.5-17.0 mm       | 1" (32.0-34.5 mm)     |
| 092.081.53.00 | 16.3 mm     | 16.5-17.0 mm       | 1 1/4" (40.0-43.0 mm) |


Other Spigot-Ø (13.8/18.5 mm) on request.



#### 4b Double clamp

| Ordering no.  | Spigot-Ø BR | Recommended<br>bore-Ø | For Pipe-Ø            |
|---------------|-------------|-----------------------|-----------------------|
| 092.090.53.00 | 16.3 mm     | 16.5-17.0 mm          | 1" (32.0-34.5 mm)     |
| 092.091.53.00 | 16.3 mm     | 16.5-17.0 mm          | 1 1/4" (40.0-43.0 mm) |


Other bore-Ø (13.8/18.5 mm) on request.



#### **4c** Eyelet clamp


| Ordering no.     | Spigot-Ø BR | Recommended<br>bore-Ø | For Pipe-Ø            |
|------------------|-------------|-----------------------|-----------------------|
| 090.033.53.43.10 | 16 mm       | 16.5-17.0 mm          | 1 1/4" (40.0-43.0 mm) |

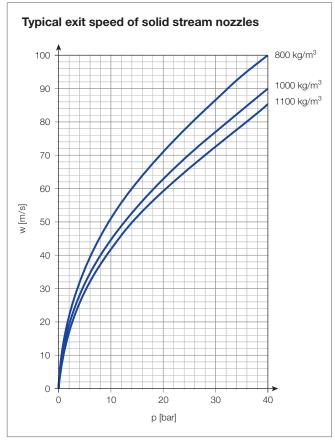
Other bore diameter (13.8/20.0 mm) on request.












Thanks to optimum flow geometries, Lechler solid stream nozzles produce compact, transparent solid stream jets of defined lengths. The almost turbulence-free liquid inflow achieves excellent efficiency, even without jet stabilizer inserts. For all cleaning processes, cutting operations and applications requiring perfect, punctiform jet impacts, i.e. whenever the point is to generate concentrated jet power, the precision of Lechler solid stream nozzles enhances productivity and performance of your plant.

There is a comprehensive range of solid stream nozzles in stainless steel with special hardening or with TC inserts for high-pressure use.

Lechler high-pressure solid stream nozzles excel in closed, stable and powerful solid jets, not even breaking at very high pressures.





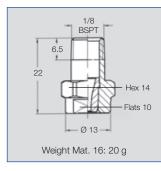
## Solid stream nozzles

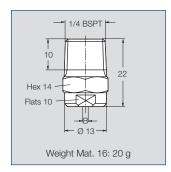
| Low-pressure nozzles | Series | <b>v</b> [l/min]<br>at <b>p =</b> 2 bar | Connection           | Application/<br>Design                                                                               | Page |
|----------------------|--------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------|------|
|                      | 544    | 0.40 – 10.00                            | 1/8 BSPT<br>1/4 BSPT | Cleaning installations. Optimized flow technology. Extreme jet power. Concentrated solid stream jet. | 58   |

| High-pressure nozzles | Series | <b>v</b> [l/min]<br>at <b>p</b> = 2 bar | Connection | Application/<br>Design  | Page |
|-----------------------|--------|-----------------------------------------|------------|-------------------------|------|
|                       | 546    | 4.04 – 16.23<br>(at 80 bar)             | 1/4 BSPT   | High-pressure cleaning. | 59   |

### Solid stream nozzles

### Series 544





Long, closed jet with punctiform impact pattern. Optimized flow conditions. Highest jet power. Concentrated solid stream jet. Applications:

Cleaning installations.









| Ordering | g no.       |          |          | В         | <b>Ÿ</b> [l/min] |         |       |       |       |       |       |       |       |
|----------|-------------|----------|----------|-----------|------------------|---------|-------|-------|-------|-------|-------|-------|-------|
|          | Mat.<br>no. | Co       | ode      | Ø<br>[mm] |                  |         |       |       |       |       |       |       |       |
|          | 16          |          |          |           |                  | p [bar] |       |       |       |       |       |       |       |
| Туре     | AISI 303    | 1/8 BSPT | 1/4 BSPT |           | 0.5              | 1.0     | 2.0   | 3.0   | 5.0   | 10.0  | 15.0  | 20.0  | 30.0  |
| 544.320  | 0           | CA       | -        | 0.80      | 0.20             | 0.28    | 0.40  | 0.49  | 0.63  | 0.89  | 1.10  | 1.26  | 1.55  |
| 544.400  | 0           | -        | CC       | 1.30      | 0.50             | 0.71    | 1.00  | 1.22  | 1.58  | 2.24  | 2.74  | 3.16  | 3.87  |
| 544.480  | 0           | -        | CC       | 1.33      | 0.80             | 1.13    | 1.60  | 1.96  | 2.53  | 3.58  | 4.38  | 5.06  | 6.20  |
| 544.560  | 0           | -        | CC       | 1.65      | 1.25             | 1.77    | 2.50  | 3.06  | 3.95  | 5.59  | 6.85  | 7.91  | 9.68  |
| 544.640  | 0           | -        | CC       | 2.09      | 2.00             | 2.83    | 4.00  | 4.90  | 6.32  | 8.94  | 10.95 | 12.65 | 15.49 |
| 544.720  | 0           | -        | CC       | 2.66      | 3.15             | 4.45    | 6.30  | 7.72  | 9.96  | 14.09 | 17.25 | 19.92 | 24.40 |
| 544.800  | 0           | -        | CC       | 3.30      | 5.00             | 7.07    | 10.00 | 12.25 | 15.81 | 22.36 | 27.39 | 31.62 | 38.73 |

B = bore diameter

Example Type + Material no. + Code = Ordering no. for ordering: 544.320 + 16 + CA = 544.320.16.CA



## **High-pressure solid stream nozzles**

#### Series 546

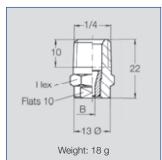


Punctiform, extremely tight, non-dispersing solid stream. Highest impact.

Applications: High-pressure cleaning,

cutting and separating.

Materials:


Nozzle body: Stainless steel

303 SS

Insert: Hardened steel

1.4034 S





| [US gal/<br>min.] at<br>40 psi | Nozzle code  Connection | Flow rate<br>code | B<br>Ø<br>[mm] | <b>Ý</b> [l/min] |                |       |       |       |       |       |
|--------------------------------|-------------------------|-------------------|----------------|------------------|----------------|-------|-------|-------|-------|-------|
|                                |                         |                   |                |                  | <b>p</b> [bar] |       |       |       |       |       |
|                                | 1/4"                    |                   |                | 40               | 60             | 80    | 100   | 150   | 200   | 300   |
| 02                             | 546                     | 360               | 0.84           | 2.86             | 3.50           | 4.04  | 4.52  | 5.54  | 6.39  | 7.83  |
| 03                             | 546                     | 400               | 1.03           | 4.31             | 5.28           | 6.10  | 6.82  | 8.35  | 9.64  | 11.81 |
| 04                             | 546                     | 450               | 1.19           | 5.80             | 7.10           | 8.20  | 9.17  | 11.23 | 12.97 | 15.88 |
| 045                            | 546                     | 470               | 1.26           | 6.54             | 8.00           | 9.25  | 10.34 | 12.66 | 14.62 | 17.91 |
| 05                             | 546                     | 480               | 1.33           | 7.29             | 8.92           | 10.30 | 11.52 | 14.11 | 16.29 | 19.95 |
| 06                             | 546                     | 520               | 1.46           | 8.70             | 10.66          | 12.31 | 13.76 | 16.85 | 19.46 | 23.83 |
| 08                             | 546                     | 570               | 1.69           | 11.48            | 14.06          | 16.23 | 18.15 | 22.23 | 25.67 | 31.44 |

B = bore diameter

|   | Connection code | Connection | p <sub>max</sub> * [bar] |
|---|-----------------|------------|--------------------------|
| ĺ | A3.00           | BSPT       | approx. 700              |

<sup>\*</sup> Only valid for operation at constant pressure

Example Nozzle code + Flow rate code + Connection code = Ordering no.

for ordering: 546 360 A3.00 546.360.A3.00 (Solid stream; 4.52 l/min. at 100 bar;

1/4" BSPT)









As a rule, any flat fan or solid stream nozzle can be operated with air instead of liquid.

However, you'll obtain the best results using the nozzle designs we specially engineered for applications of compressed air or saturated steam. For further details, please refer to the next pages. In addition to air, various nozzle types are also suited for injecting saturated steam. Typical applications of Lechler air nozzles are, for instance, efficient blowing off and blowing out, cooling, drying or cleaning.

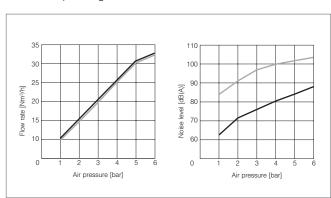
#### Multi-channel air nozzles

In many industries and workshops compressed air has become an indispensable tool.

Compressed air is needed for cleaning, blowing off, drying, conveying and for numerous other applications.

Where uncontrolled compressed air is applied, very often annoying, high-frequency hiss noises arise, which may cause serious harm to hearing. These »noises« are produced by turbulences generated at the air outlet. Their intensity depends on the shape of the nozzle orifice and on the air pressure. This means: the better and stronger the air jet is supposed to be, the higher the health-injuring noise level and the higher the air consumption and its cost.

# The solution: Lechler multi-channel air nozzles, featuring a significantly reduced sound level, high blowing power and low air consumption.


The performance of multichannel air nozzles is based on partitioning the air inflow into single air jets. 16 air channels, arranged to ensure optimum flow conditions, provide for a particularly uniform, straight and powerful overall air jet.



## In comparison to single-hole air nozzles the advantages are as follows:

- Reduction of the noise level of up to 12 dB
- Low service air pressure with the same blowing power
- Lower air consumption
- Better blowing effect over a longer reach
- Lower operating costs





Comparison of a conventional, single-hole nozzle with the Lechler multi-channel round jet nozzle type 600.326

- Lechler multi-channel round jet nozzle
  - Conventional single-hole nozzle

#### Note for calculation of measuring values:

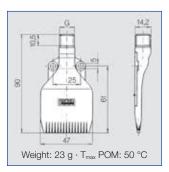
Blowing power: Blowing distance vertical 50 mm on a scale, area 400 x 500 mm.

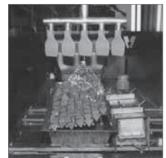
## Air nozzles

| Flat fan nozzles<br>for Air | Series                                        | Air consumption [m³/h] at <b>p =</b> 2 bar | Connection | Application/<br>Design                                                                                                          | Page |
|-----------------------------|-----------------------------------------------|--------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| PAF<br>S                    | 600.130<br>600.484<br>RTICULARLY<br>I L E N T | 8.00 - 18.00                               | 1/4 BSPP   | Blowing off and blowing out, cleaning, drying, cooling, conveying with air.  Multi-channel flat fan nozzle.  Plastic versions.  | 64   |
|                             | 600.283<br>600.493                            | 18.00-30.00                                | 1/4 BSPP   | Blowing off and blowing out, cleaning, drying, cooling, conveying with air.  Multi-channel flat fan nozzle.  Metallic versions. | 65   |

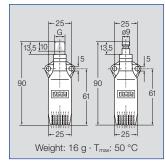
| Solid stream nozzles for Air | Series  | Air consumption [m³/h] at <b>p =</b> 2 bar | Connection | Application/<br>Design                                                                                                                                       | Page |
|------------------------------|---------|--------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                              | 600.326 | 15.00                                      | 1/4 BSPP   | Targeted blowing out and blowing off with the aid of air guns.  Multi-channel round jet nozzle, producing a powerful air jet with punctiform impact pattern. | 66   |




# Multi-channel flat fan nozzles for air »Whisperblast®«, plastic versions Series 600.130 / 600.484


Also available in PP for galvanic and food industry (FA).

Highly efficient air stream, acting upon areas.
Reduced noise levels.
Low air consumption.
Applications:
Blowing off and blowing out, cleaning, drying, cooling,


conveying with air.











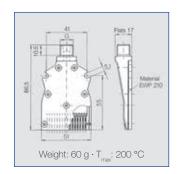


| Ordering no. |              |          |  |  |  |
|--------------|--------------|----------|--|--|--|
|              | Material no. | Code     |  |  |  |
|              | 56           |          |  |  |  |
| Type         | POM          | 1/4 BSPP |  |  |  |
| 600.130      | 0            | AC       |  |  |  |
| 600.484      | 0            | AC       |  |  |  |

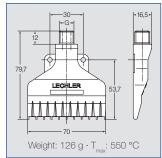


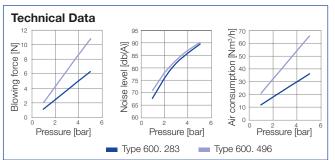
Ball joints see page 89

Example Type + Material no. + Code = Ordering no. for ordering: 600.130 + 56 + AC = 600.130.56.AC




# Multi-channel flat fan nozzles for air »Whisperblast®«, metalic versions Series 600.283 / 600.493


Metalic versions for higher temperatures. Highly efficient air stream, acting upon areas. Reduced noise levels. Low air consumption.


Applications:
Blowing off and blowing out, cleaning, drying, cooling, conveying with air.











| Ordering no. |              |                          |          |  |  |  |
|--------------|--------------|--------------------------|----------|--|--|--|
|              | Mater        | Code                     |          |  |  |  |
| Туре         | Aluminium A5 | Stainless steel <b>1</b> | 1/4 BSPP |  |  |  |
| 600.283      | 0            | -                        | AC       |  |  |  |
| 600.493      | -            | 0                        | AC       |  |  |  |



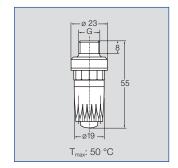
Ball joints see page 89

Example Type + Material no. + Code = Ordering no. for ordering: 600.283 + 42 + AC = 600.283.42.AC



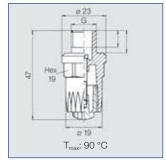
**Series 600.326** 

Particularly silent!


Powerful air jet, producing punctiform impact patterns. Low noise level. Low air consumption.

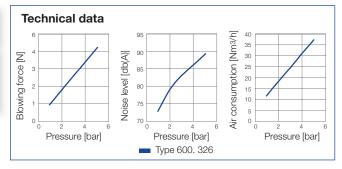
Applications: Targeted blowing out and blowing off with compressed air guns.

#### Reduction of noise level of up to 12 dB (A).












| Ordering no.                   | Code |                     | \      |  |
|--------------------------------|------|---------------------|--------|--|
| Туре                           | AC   | Connection thread G | Weight |  |
| 600.326.5K<br>(Material: ABS)  | 0    | 1/4 BSPP            | 9 g    |  |
| 600.326.3W<br>(Material: Zinc) | 0    | 1/4 BSPP            | 47 g   |  |

| Example      | Туре       | + | Code | = | Ordering no.  |
|--------------|------------|---|------|---|---------------|
| of ordering: | 600.326.5K | + | AC   | = | 600.326.5K.AC |





Ball joints see page 89









#### **Operating principles**

#### **Static**



Static spray balls do not rotate and therefore require considerably more fluid.

They are used primarily for rinsing tanks. They are inexpensive to purchase and are very robust (trouble-free).

#### Free-spinning



The cleaning fluid drives the spray head by means of specially posi-

tioned nozzles. The rapidly repeated impacts removes the soil and rinses it from the tank surface. This results in optimum cleaning efficiency at low pressures in small to medium-sized tanks.

#### **Controlled rotation**



The rotating head is driven by the fluid. Either a turbine wheel with an internal

gear or a hydraulic brake is used to control the rotation. This ensures that the speed remains in the optimum range even at higher pressures. The droplets produced are larger and strike the tank wall at higher speed. These rotating cleaning nozzles thus achieve an even higher impact.

#### **Gear-controlled**



The cleaning fluid drives an internal gear by means of a turbine wheel so that

the spray head rotates by two axes. The solid jet nozzles mounted on the spray head produce powerful jets. These jets sweep the entire tank surface in a pre-programmed, model-specific pattern during a spray cycle. This requires a certain minimum time. These models generate the highest impact and are therefore ideal for very large tanks and the toughest cleaning tasks.

#### **Materials**



cleaning nozzles are made of highest-quality materials, such as stainless steel AISI 316L, PVDF,

Lechler tank

PEEK, or Teflon®. In addition to meeting the requirements for resistance and wear, materials used in the beverage, food and pharmaceutical industries must also be food-grade.

Many of the materials used for Lechler tank cleaning nozzles fully comply with FDA requirements and conform to (EC) 1935/2004.

The respective logo on the product pages indicates which requirements are met.

#### **Hygiene requirements**

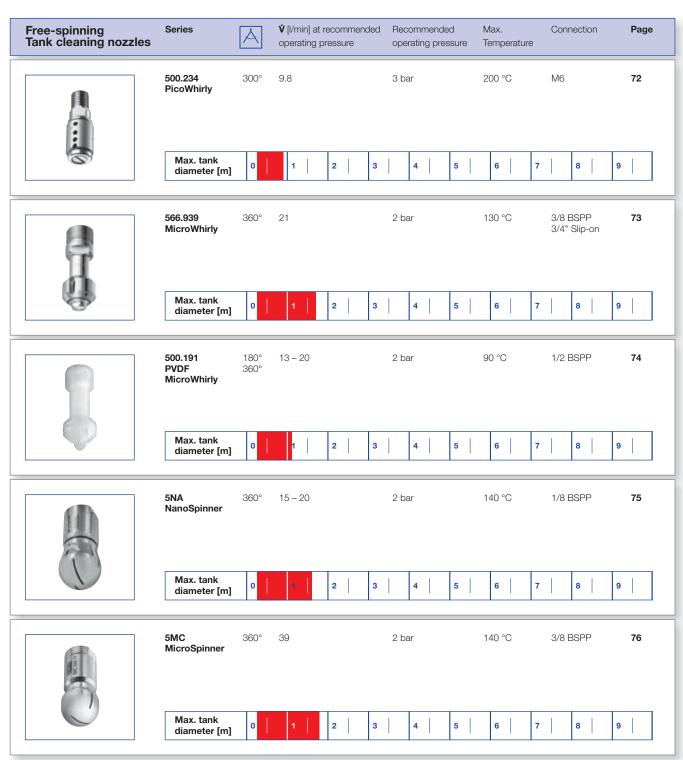




All Lechler precision nozzles for tank cleaning are designed to meet hygiene requirements. In addition, Lechler also offers special nozzles for

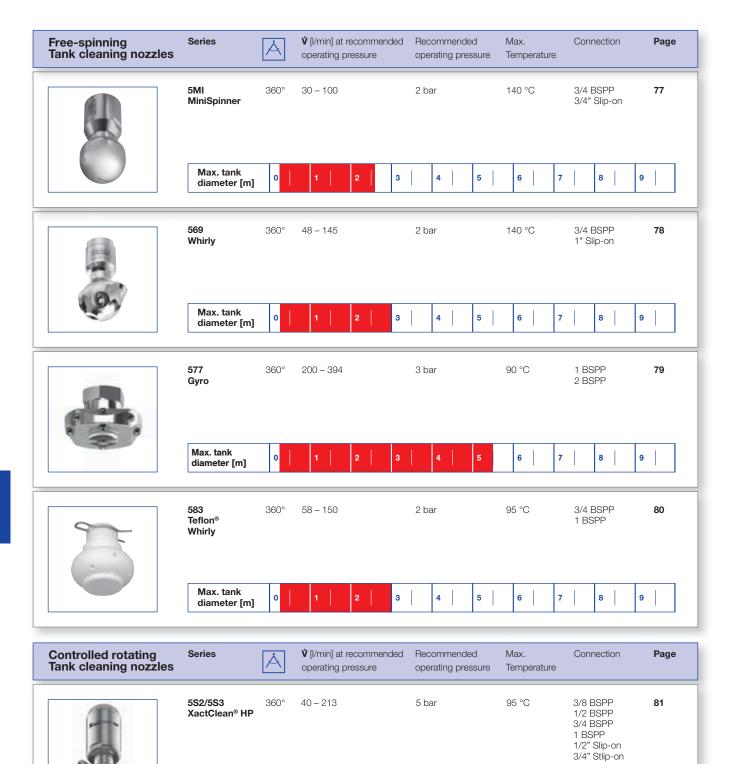
particularly stringent hygienic applications - certified to 3A® or EHEDG.

#### **ATEX**


Lechler offers several nozzle series designed especially for use in explosive atmospheres. For more detailed information, please request our brochure "Precision nozzles for tank and equipment cleaning".

For detailed information and planning resources, please request our brochure "Precision nozzles for tank and equipment cleaning".




# \*

## Tank cleaning nozzles



Continued on next page.





9

Max. tank

diameter [m]

# \*

## Tank cleaning nozzles



## Rotating cleaning nozzle »PicoWhirly« Series 500,234







- Very compact design
- Self rotating
- Rotating solid jets
- Completely made of stainless steel

#### Material:

316L SS

#### Max. temperature:

200 °C

## Recommended operating pressure:

3 bar

#### Installation:

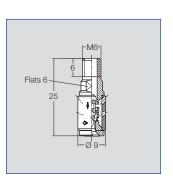
Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Kolsterised slide bearing




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ PicoWhirlyGB





| Spray angle | Ordering no.  | E<br>Ø | <b>Ý</b> [l/min]                          |     |     |                                |                           |  |
|-------------|---------------|--------|-------------------------------------------|-----|-----|--------------------------------|---------------------------|--|
| angle       | Type          | [mm]   | <b>p</b> [bar] (p <sub>max</sub> = 5 bar) |     |     |                                |                           |  |
|             |               | 1      | 1                                         | 2   | 3   | at 40 psi<br>[US gal./<br>min] | Max. tank<br>diameter [m] |  |
| 300°        | 500.234.G9.00 | 1.8    | 5.7                                       | 8.0 | 9.8 | 2.5                            | 0.9                       |  |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

## **Rotating cleaning nozzle** »MicroWhirly« Series 566







- Compact design
- Self rotating
- Effective flat jet nozzles

#### Materials:

316L SS and PEEK

## Max. temperature:

130 °C

#### Recommended operating pressure:

2 bar

#### Installation:

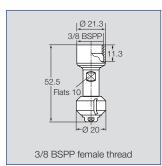
Operation in every direction is possible

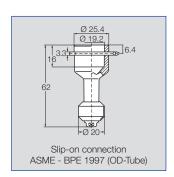
#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PEEK





#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ MicroWhirlyGB







| Spray<br>angle | Orde<br>Type | ring no.<br>Conn      | ection          | E<br>Ø<br>[mm] | Ø                                  |    |    |   |                           |
|----------------|--------------|-----------------------|-----------------|----------------|------------------------------------|----|----|---|---------------------------|
| A              |              | 3/8<br>BSPP<br>female | 3/4"<br>Slip-on |                | at 40 ps<br>[US gal.<br>1 2 3 min] |    |    |   | Max. tank<br>diameter [m] |
| 360°           | 566.939.1Y   | AF                    | TF              | 2.4            | 15                                 | 21 | 26 | 7 | 1.7                       |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Slip-on information: - R-clip made of 316L SS is included (Ordering number: 095.022.1Y.50.94.E)

- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 566.939.1Y | + | AF         | = | 566.939.1Y.AF |

## **Rotating cleaning nozzle** »PVDF MicroWhirly« **Series 500.191**







- Very inexpensive
- Self rotatingEffective flat jet nozzles
- Completely made of PVDF

#### Material:

**PVDF** 

### Max. temperature:

90 °C

#### Recommended operating pressure:

2 bar

#### Installation:

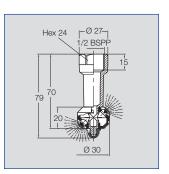
Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PVDF




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ **PVDFMicroWhirlyGB** 





| Spray angle | Ordering no.<br>Type | E<br>Ø | Connection     | <b>Ý</b> [l/min] |                                           | /min] |                                | _                         |
|-------------|----------------------|--------|----------------|------------------|-------------------------------------------|-------|--------------------------------|---------------------------|
| angle       | туре                 | [mm]   | BSPP<br>female |                  | <b>p</b> [bar] (p <sub>max</sub> = 5 bar) |       |                                |                           |
|             |                      |        |                | 1                | 2                                         | 3     | at 40 psi<br>[US gal./<br>min] | Max. tank<br>diameter [m] |
| 180°        | 500.191.5E.02        | 2.2    | 1/2"           | 9                | 13                                        | 16    | 4                              | 0.8                       |
| 180°        | 500.191.5E.01        | 2.2    | 1/2"           | 9                | 13                                        | 16    | 4                              | 0.8                       |
| 360°        | 500.191.5E.00        | 2.2    | 1/2"           | 14               | 20                                        | 24    | 6                              | 1.1                       |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

# Rotating cleaning nozzle »NanoSpinner« Series 5NA







- Entirely made from stainless steel
- Self-rotating
- Efficient slot design
- Modern double ball bearing

#### Materials:

316L SS, 440C SS

## Max. temperature:

140 °C

# Recommended operating pressure:

2 bar

#### Installation:

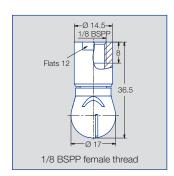
Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of 440C SS




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ NanoSpinnerGB





| Spray<br>angle | Ordering number Type | E<br>Ø<br>[mm] |    |                                   | [l/min]<br>max = 5 bar) |   | Max. tank<br>diameter [m] |  |  |
|----------------|----------------------|----------------|----|-----------------------------------|-------------------------|---|---------------------------|--|--|
|                |                      |                | 1  | at 40 psi<br>1 2 3 [US gal./ min] |                         |   |                           |  |  |
| 360°           | 5NA.879.1Y.AB        | 0.5            | 11 | 15                                | 18                      | 5 | 1.4                       |  |  |
|                | 5NA.929.1Y.AB        | 0.5            | 14 | 20                                | 25                      | 6 | 1.6                       |  |  |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

## Rotating cleaning nozzle »MicroSpinner« Series 5MC







- Entirely made from stainless steel
- Self-rotating
- Efficient slot design
- Modern double ball bearing

#### Materials:

316L SS, 440C SS

#### Max. temperature:

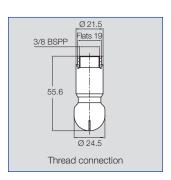
140 °C

# Recommended operating pressure:

2 bar

#### Installation:

Operation in every direction is possible


#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of 440C SS





| Spray angle | Ordering no | ).                          | E<br>Ø |    | <b>V</b> [I                | <b>V</b> [l/min] <b>p</b> [bar] (p <sub>max</sub> = 5 bar) |                 |  |  |  |  |
|-------------|-------------|-----------------------------|--------|----|----------------------------|------------------------------------------------------------|-----------------|--|--|--|--|
| A           | Туре        | Connection  3/8 BSPP female | [mm]   | 1  | at 40 psi<br>[US gal./min] | Max. tanl<br>diameter [r                                   |                 |  |  |  |  |
| 0000        |             | Terriale                    |        | '  | 2                          | 3                                                          | [OO gai./11ii1] |  |  |  |  |
| 360°        | 5MC.049.1Y. | AF                          | 0.9    | 28 | 39                         | 12                                                         | 1.8             |  |  |  |  |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.



#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ SpinnerGB Example Type + Connection = Ordering no. for ordering: 5MC.049.1Y + AF = 5MC.049.1Y.AF

# Rotating cleaning nozzle »MiniSpinner« Series 5MI







- Entirely made from stainless steel
- Self-rotating
- Efficient slot design
- Modern double ball bearing

#### Materials:

316L SS, 440C SS

# Max. temperature: $140 \, ^{\circ}\text{C}$

# Recommended operating pressure:

2 bar

#### Installation:

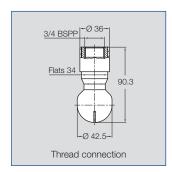
Operation in every direction is possible

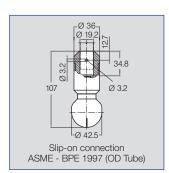
#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of 440C SS





#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ SpinnerGB







| Spray | Ordering   | no.                   |            | E<br>Ø |                                           | <b>V</b> [ | l/min] |                            |                           |  |
|-------|------------|-----------------------|------------|--------|-------------------------------------------|------------|--------|----------------------------|---------------------------|--|
| angle | Туре       | Conn                  | Connection |        | <b>p</b> [bar] (p <sub>max</sub> = 5 bar) |            |        |                            | Max. tank<br>diameter [m] |  |
|       |            | 3/4 BSPP 3/4" Slip-on |            |        | 1                                         | 2          | 3      | at 40 psi<br>[US gal./min] | diar                      |  |
| 360°  | 5MI.054.1Y | AL                    | AL TF07    |        | 21                                        | 30         | 37     | 9                          | 1.8                       |  |
|       | 5MI.074.1Y | AL                    | TF07       | 0.6    | 35                                        | 49         | 60     | 15                         | 2.1                       |  |
|       | 5MI.014.1Y | AL                    | TF07       | 0.9    | 49                                        | 69         | 85     | 21                         | 2.3                       |  |
|       | 5MI.209.1Y | AL                    | TF07       | 1.5    | 71                                        | 100        | 122    | 31                         | 2.6                       |  |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Slip-on information: - R-clip made of stainless steel 316L SS is included (Ordering no.: 095.022.1Y.50.60).

- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 5MI.054.1Y | + | AL         | = | 5MI.054.1Y.AL |

## Rotating cleaning nozzle »Whirly« Series 569







- Popular and proven design
- Powerful flat jets
- Wide range of flow rates

#### **Materials:**

316L SS, PEEK, Rulon 641

#### Max. temperature:

140 °C

# Recommended operating pressure:

2 bar

#### Installation:

Operation in every direction is possible; in horizontal installation position no rotating until 2 bar

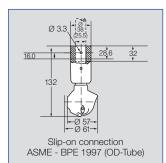
#### Filtration:

Line strainer with a mesh size of 0.1 mm/170 mesh

#### Bearing:

Double ball bearing made of stainless steel




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ WhirlyGB







| Spray angle | Ordering no. |                       |               | E    | E <b>Ÿ</b> [l/min]                        |     |     |                                |                      |  |
|-------------|--------------|-----------------------|---------------|------|-------------------------------------------|-----|-----|--------------------------------|----------------------|--|
| angle       | Туре         | Conn                  | ection        | [mm] | <b>p</b> [bar] (p <sub>max</sub> = 6 bar) |     |     |                                | tank<br>er [m]       |  |
|             |              | 3/4<br>BSPP<br>female | 1"<br>Slip-on |      | 1                                         | 2   | 3   | at 40 psi<br>[US gal./<br>min] | Max. tar<br>diameter |  |
| 360°        | 569.059.1Y   | AL                    | TF10          | 3.2  | 36                                        | 48  | 62  | 15                             | 1.8                  |  |
|             | 569.139.1Y   | AL                    | TF10          | 3.6  | 52                                        | 71  | 87  | 22                             | 2.1                  |  |
|             | 569.199.1Y   | AL                    | TF10          | 4.8  | 69                                        | 97  | 119 | 30                             | 2.6                  |  |
|             | 569.279.1Y   | AL                    | TF10          | 7.1  | 103                                       | 145 | 178 | 45                             | 3.0                  |  |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

Slip-on information: - R-clip made of stainless steel 316L SS is included (Ordering no.: 095.022.1Y.50.60.E).

- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 569.059.1Y | + | AL         | = | 569.059.1Y.AL |

# Rotating cleaning nozzle »Gyro« Series 577







- Self rotating
- Effective flat jet nozzles
- Large free cross sections, insensitive to clogging

### Max. tank diameter:

5.5 m

#### Materials:

316L SS, PTFE

### Max. temperature:

90 °C

# Recommended operating pressure:

3 bar

#### Installation:

Vertically facing downward

#### Filtration:

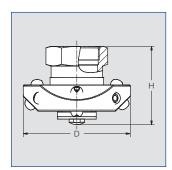
Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PTFE

#### Accessories:

Spare parts set consisting of: top seal, bottom seal, bolt, nut, sleeve, instructions for use




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ GyroGB





| Spray angle | Or         | dering no. |        |     |             | <b>V</b> [l/mir        | ղ]       |                        | Dimensions  |               |  |
|-------------|------------|------------|--------|-----|-------------|------------------------|----------|------------------------|-------------|---------------|--|
|             |            | Connection |        |     | <b>p</b> [k | oar] (p <sub>max</sub> | = 5 bar) |                        |             |               |  |
|             | Туре       |            |        |     |             |                        |          | at 40 psi<br>[US gal./ | Height<br>H | Diameter<br>D |  |
|             |            | 1 BSPP     | 2 BSPP | 1   | 2           | 3                      | 5        | min]                   | [mm]        | [mm]          |  |
| 360°        | 577.289.1Y | AN         | -      | 115 | 163         | 200                    | 258      | 50                     | 72          | 118           |  |
|             | 577.369.1Y | AN         | -      | 182 | 258         | 316                    | 408      | 80                     | 72          | 118           |  |
|             | 577.409.1Y | -          | AW     | 228 | 322         | 394                    | 509      | 100                    | 103         | 156           |  |

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 577.289.1Y | + | AN         | = | 577.289.1Y.AN |



## Rotating cleaning nozzle »Teflon® Whirly« Series 583







- Self rotating
- Rotating solid jets
- Recommended for tanks made of glass and enamel

#### Material:

PTFE (Teflon®)

### Max. temperature:

95 °C

# Recommended operating pressure:

2 bar

#### Installation:

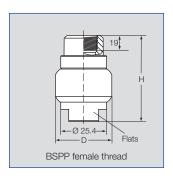
Operation in every direction is possible

#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Slide bearing made of PTFE




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ TeflonWhirlyGB





| Spray angle | Orderi     | ng no.                |                     | E<br>Ø | <b>v</b> [l/min] |                                           |     |    |     | Dimmensions for female thread version |                |
|-------------|------------|-----------------------|---------------------|--------|------------------|-------------------------------------------|-----|----|-----|---------------------------------------|----------------|
|             | Type       | Conn                  | ection              | [mm]   |                  | <b>p</b> [bar] (p <sub>max</sub> = 6 bar) |     |    |     | version                               |                |
|             |            | 3/4<br>BSPP<br>female | 1<br>BSPP<br>female |        | 1                | at 40 psi<br>[US gal./<br>1 2 3 min]      |     |    |     | Dia-<br>meter<br>D<br>[mm]            | Max.<br>diamet |
| 360°        | 583.119.55 | AL                    | -                   | 1.8    | 47               | 58                                        | 71  | 18 | 74  | 49                                    | 2.4            |
|             | 583.209.55 | AL                    | -                   | 3.5    | 71               | 71 100 122 31                             |     |    |     | 49                                    | 2.5            |
|             | 583.279.55 | -                     | AN                  | 3.7    | 106              | 150                                       | 184 | 47 | 100 | 78.5                                  | 3.0            |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure means higher wear and smaller droplets. This might have adverse effects on the cleaning result. Teflon® is a registered trademark of E. I. Dupont de Nemours and Company.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 583.119.55 | + | AL         | = | 583.119.55.AL |



## **Rotating cleaning nozzle** »XactClean® HP« Series 5S2 / 5S3







- Controlled rotation
- Powerful flat jet nozzles
- Very efficient tank cleaning nozzle

#### Materials:

316L SS, 316 SS, 632 SS, PEEK, PTFE, Zirconium oxide, EPDM

## Max. temperature:

95 °C

#### Recommended operating pressure:

5 bar

#### Installation:

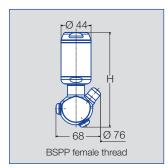
Operation in every direction is possible

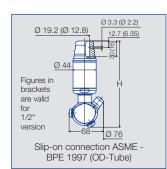
#### Filtration:

Line strainer with a mesh size of 0.3 mm/50 mesh

#### Bearing:

Double ball bearing





#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ **XactCleanHPGB** 







#### Nozzle dimensions [mm]

| Connection | Н   |
|------------|-----|
| AF         | 148 |
| AH         | 149 |
| AL         | 139 |
| AN         | 139 |
| TF05       | 150 |
| TF07       | 164 |

| Spray angle |            |                        | Order                  | ing no.                |                      |                 |                 | E<br>Ø | <b>Ÿ</b> [l/min] |     |     |                                | 후[                   |
|-------------|------------|------------------------|------------------------|------------------------|----------------------|-----------------|-----------------|--------|------------------|-----|-----|--------------------------------|----------------------|
|             |            |                        | Connection             |                        |                      |                 | [mm]            | р[     | 15 bar)          |     |     |                                |                      |
|             | Туре       | 3/8<br>BSPP*<br>female | 1/2<br>BSPP*<br>female | 3/4<br>BSPP*<br>female | 1<br>BSPP*<br>female | 1/2"<br>Slip-on | 3/4"<br>Slip-on |        | 2                | 5   | 10  | at 40 psi<br>[US gal./<br>min] | Max. tal<br>diameter |
| 360°        | 5S2.959.1Y | AF                     | АН                     | -                      | -                    | TF05            | -               | 1.7    | 25               | 40  | 57  | 7.8                            | 3.5                  |
|             | 5S3.059.1Y | -                      | AH                     | -                      | -                    | TF05            | -               | 2.0    | 41               | 65  | 92  | 12.8                           | 4.0                  |
|             | 5S3.119.1Y | -                      | AH                     | AL                     | -                    | -               | TF07            | 2.0    | 60               | 94  | 133 | 18.4                           | 6.0                  |
|             | 5S3.189.1Y | -                      | -                      | AL                     | -                    | -               | TF07            | 2.0    | 89               | 141 | 199 | 27.7                           | 7.0                  |
|             | 5S3.239.1Y | -                      | -                      | AL                     | -                    | -               | TF07            | 2.0    | 111              | 175 | 248 | 34.3                           | 7.5                  |
|             | 5S3.269.1Y | -                      | -                      | AL                     | AN                   | -               | TF07            | 2.0    | 135              | 213 | 301 | 41.8                           | 8.0                  |

E = Narrowest free cross-section · \*NPT on request

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Operation with compressed air only for short-term usage. Operation above the recommended operating pressure meanshigher wear and smaller droplets. This might have adverse effects on the cleaning result.

#### Slip-on information:

- R-clip made of stainless steel 316L SS is included (Ordering number: 095.022.1Y.50.60.E (TF07), 095.013.1E.05.59.0 (TF05)).
  Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and rotating cleaning nozzle.

| Example       | Туре       | + | Connection | = | Ordering no.  |
|---------------|------------|---|------------|---|---------------|
| for ordering: | 5S2.959.1Y | + | AF         | = | 5S2.959.1Y.AF |



## High impact tank cleaning machine »IntenseClean« Series 5TM



- Gear driven
- Very powerful solid jets
- Popular and proven design

#### Materials\*:

316L SS, PTFE, carbon fibre

## Max. temperature:

60°C

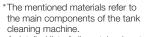
# Recommended operating pressure:

5 bar

#### Installation:

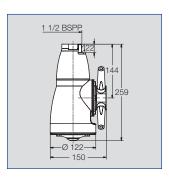
Operation in every direction is possible

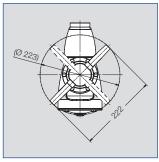
#### Filtration:

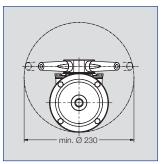

Line strainer with a mesh size of 0.2 mm/80 mesh

#### Bearing:

Ball bearing


#### Weight:


7.5 kg




A detailed list of all contained materials is available on request.









| Spray angle | Ordering no.<br>Type | E<br>Ø<br>[mm] | Number<br>Ø<br>Nozzles<br>[mm] | 2   |     | /min]  o <sub>max</sub> = 7 bar)  5 | at 40 psi<br>[US gal./min] | Max. tank<br>diameter [m] |
|-------------|----------------------|----------------|--------------------------------|-----|-----|-------------------------------------|----------------------------|---------------------------|
| 360°        | 5TM.406.1Y.AS        | 6              | 4 x 6.0                        | 140 | 171 | 221                                 | 43                         | 18.0                      |
|             | 5TM.407.1Y.AS        | 7              | 4 x 7.0                        | 170 | 208 | 269                                 | 53                         | 20.0                      |
|             | 5TM.408.1Y.AS        | 8              | 4 x 8.0                        | 200 | 245 | 316                                 | 62                         | 22.0                      |
|             | 5TM.410.1Y.AS        | 10             | 4 x 10.0                       | 260 | 318 | 411                                 | 81                         | 23.0                      |

E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.



| Cycle time [minutes] | 30 -<br>25 -<br>20 -<br>15 -<br>10 - |   |   |                 |          |          |   |   |   | 5TM.208<br>5TM.210<br>5TM.406<br>5TM.407<br>5TM.408<br>5TM.410 |
|----------------------|--------------------------------------|---|---|-----------------|----------|----------|---|---|---|----------------------------------------------------------------|
|                      | 0 -                                  | 2 | 3 | 4<br><b>Pro</b> | ssure [b | 5<br>arl | 6 | 7 | - |                                                                |
|                      |                                      |   |   | 110             | Sourc Lo | aij      |   |   |   |                                                                |

Cycle time depending on pressure of series 5TM

# \*

## Static spray balls

#### Series 591







Popular spray ball designPowerful solid jets

Material: 316Ti SS, Pin: 316L SS

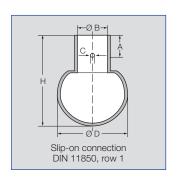
**Max. temperature:** 200 °C

# Recommended operating pressure:

3 bar

#### Installation:

Operation in every direction is possible




#### **Function video**

Scan the QR-code or go to:

www.lechler.de/ StaticSprayBallGB





| Spray<br>angle | Ordering no.<br>Type | E<br>Ø<br>[mm] |     |     | <b>v</b> [l/m |     |                                |    | Dime        | ensions ppi          | rox. [mm    | ]   |      | tank<br>ter [m]     |
|----------------|----------------------|----------------|-----|-----|---------------|-----|--------------------------------|----|-------------|----------------------|-------------|-----|------|---------------------|
|                |                      |                | 0.5 | 1.0 | 2.0           | 3.0 | at 40 psi<br>[US gal./<br>min] |    | Height<br>H | Connec-<br>tion<br>B | Slip-<br>on | С   | А    | Max. ta<br>diameter |
| 360°           | 591.M11.17.00        | 0.8            | 7   | 10  | 14            | 17  | 4                              | 20 | 32.5        | 8.2                  | DN8         | 2.2 | 9.0  | 2.8                 |
| -              | 591.X11.17.00        | 1.2            | 25  | 35  | 49            | 61  | 15                             | 24 | 37.5        | 12.2                 | DN10        | 2.2 | 9.0  | 2.2                 |
|                | 591.Y11.17.00        | 1.6            | 49  | 70  | 99            | 121 | 31                             | 30 | 42          | 18.2                 | DN15        | 2.2 | 9.0  | 2.5                 |
|                | 591.A21.17.00        | 2.0            | 91  | 128 | 181           | 222 | 56                             | 40 | 53          | 22.2                 | DN20        | 2.5 | 9.0  | 3.5                 |
|                | 591.B31.17.00        | 2.1            | 130 | 183 | 259           | 318 | 80                             | 64 | 90          | 28.2                 | DN25        | 2.8 | 18.0 | 5.2                 |
|                | 591.B51.17.00        | 3.0            | 206 | 292 | 412           | 505 | 128                            | 64 | 90          | 28.2                 | DN25        | 2.8 | 18.0 | 5.4                 |

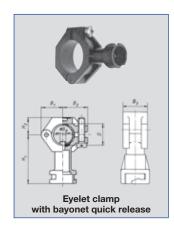
E = Narrowest free cross-section

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.

Slip-on information: - R-clip made of stainless steel 316L SS or similar is included.

- Depending on diameter of the adapter the flow rate can increase due to leakage between connecting pipe and static spray ball.

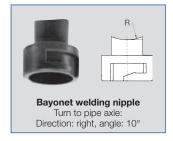
In most applications, static spray balls do not deliver the same cleaning power as rotating nozzles, anyway they do have advantages that make them indispensable for certain tasks:


- No moving parts
- Self-draining
- Easy to inspect
- Proven use in hygienically sensitive environments

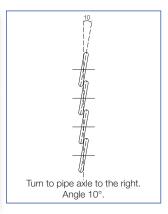
Should a rotating nozzle stop turning for some reason, parts of the tank may remain uncleaned. This cannot happen with spray balls. However, gaps can occur in the spray pattern if individual openings are blocked with soil.

Compared to rotating nozzles, static spray balls usually need two to three times the amount of liquid.




## Bayonet quick release system



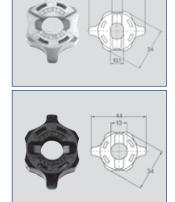

|                                                                        | Ord     | dering i          | no.              |      |                  |        |                |                |                | D.                |                |                |                |                |        |
|------------------------------------------------------------------------|---------|-------------------|------------------|------|------------------|--------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|--------|
|                                                                        |         | Mater             | ial no.          |      |                  |        |                |                |                | DI                | mensio<br>[mm] | ns             |                |                |        |
| For series                                                             | Туре    | Polyamid Polyamid | Polypropylene 23 | Code | Screw (Material) | Pipe Ø | D<br>Ø<br>[mm] | H <sub>1</sub> | H <sub>2</sub> | B <sub>R</sub> *Ø | B**Ø           | B <sub>1</sub> | B <sub>2</sub> | В <sub>3</sub> | Weight |
| net<br>/ 2TR<br>646<br>684                                             | 090.003 | 0                 | 0                | KA   |                  | 1/2"   | 20-<br>22.0    | 49.5           | 16.5           | 6.0               | 6.2-<br>6.4    | 21.2           | 23.8           | 18.5           | 22 g   |
| 302 Bayonet / 2<br>422 Bayonet / 2<br>468 / 548 / 64<br>652 / 679 / 68 | 090.013 | 0                 | 0                | KA   | 303 SS           | 3/4"   | 25-<br>27.5    | 52.5           | 17.5           | 7.6               | 7.8-<br>8.0    | 24.5           | 26.5           | 22.0           | 26 g   |
| 302<br>422 Bay<br>468 /<br>652 /                                       | 090.023 | 0                 | 0                | KA   |                  | 1"     | 32-<br>34.5    | 57.0           | 21.0           | 10.6              | 10.8-<br>11.0  | 30.0           | 31.0           | 22.0           | 32 g   |

 $^*B_R \oslash =$  Spigot diameter  $^{***B} \oslash =$  Recommended bore diameter Information: Please consider the material combination if you use bayonet quick release eyelet clamps in combination with bayonet quick release retainer caps. When different materials are used, the cap may become difficult to turn.

| Example       | Туре    | + | Material no. + | Code | = | Ordering no.  |
|---------------|---------|---|----------------|------|---|---------------|
| for ordering: | 090.003 | + | 51 +           | KA   | = | 090.003.51.KA |



| For series                                       | Ordering no.     | Material | Dimer<br>[m |    |
|--------------------------------------------------|------------------|----------|-------------|----|
| ш                                                |                  |          | L           | R  |
| Bayonet<br>Bayonet<br>8 / 548 / 646<br>679 / 684 | 095.016.50.08.05 | PVC      | 25          | 16 |
| 302 Bi<br>422 Bi<br>2TR / 468 /<br>652 / 67      | 095.016.53.08.05 | PP       | 25          | 16 |

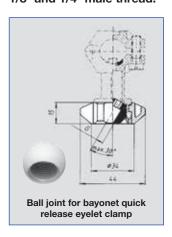





## **Bayonet quick release system**

# Bayonet quick-release system

incl. gasket 065.242.73 (Material: rubber)




| For series             | Ordering no.  | Material      | Colour |
|------------------------|---------------|---------------|--------|
|                        | 065.202.53.00 | Polypropylene | grey   |
| 652 / 679              | 065.202.56.00 | POM           | red    |
|                        | 065.202.5E.00 | PVDF          | blue   |
| 2TR / 468 / 548<br>684 | 065.202.53.11 | Polypropylene | grey   |
| 2TR / 46               | 065.202.56.11 | POM           | black  |
| Gaskets                | 065.242.73.00 | Rubber        | -      |
| Gas                    | 065.242.7A.00 | Viton         | -      |

Information: Please consider the material combination if you use bayonet quick release eyelet clamps in combination with bayonet quick release retainer caps. When different materials are used, the cap may become difficult to turn.

# Ball joint for bayonet quick release system

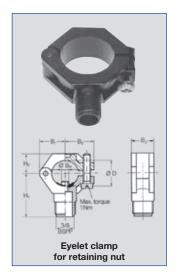
Inexpensive ball joint system for nozzles with 1/8" and 1/4" male thread.



|                                                        | Ordering | no.         |          |          |        |
|--------------------------------------------------------|----------|-------------|----------|----------|--------|
| ies                                                    |          | Mat.<br>no. | Co       | de       | Colour |
| For series                                             | Туре     | 5E HOVA     | 1/8 BSPP | 1/4 BSPP |        |
| For all nozzles<br>with 1/8" - or<br>1/4"-male thread. | 092. 150 | 0           | АВ       | AD       | blue   |



| For series        | Ordering no.     | Material | Colour |
|-------------------|------------------|----------|--------|
| For<br>ball joint | 092. 150. 5E. 00 | PVDF     | blue   |



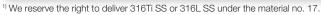

#### Pressure/Temperature

| Т      | P <sub>max</sub> |
|--------|------------------|
| 65 °C  | 10 bar           |
| 80 °C  | 8 bar            |
| 100 °C | 4 bar            |



# **Eyelet clamps / Retaining nuts**

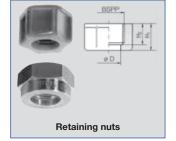



|                                     | Ord     | dering i | no.           |      | Dimensions<br>[mm] |      |           |             |                  |               |                |                |      |      |                |                   |
|-------------------------------------|---------|----------|---------------|------|--------------------|------|-----------|-------------|------------------|---------------|----------------|----------------|------|------|----------------|-------------------|
|                                     | Туре    | Ma       | aterial r     | no.  |                    |      |           |             |                  | [III]         | 111]           |                |      |      |                |                   |
| ries                                |         | 51       | 53            | 5E   | >                  |      |           |             |                  |               |                |                |      |      |                | ਰ                 |
| For Series                          |         | amid     | Polypropylene | lı.  | Sorew              |      |           |             |                  |               |                |                |      |      |                | Weight (Polyamid) |
|                                     |         | Polyamid | Polyk         | PVDF |                    | BSPP | Pipe<br>Ø | D<br>Ø      | B <sub>R</sub> * | B**<br>Ø      | B <sub>1</sub> | B <sub>2</sub> | Вз   | H₁   | H <sub>2</sub> | Weig              |
| 2 / 308<br>3 / 679<br>2             | 090.003 | 0        | 0             | 0    | SS                 | 3/8  | 1/2"      | 20-<br>22.0 | 6                | 6.2-<br>6.4   | 21.2           | 23.8           | 18.5 | 36.5 | 16.5           | 20 g              |
| 216 / 302<br>468 / 548<br>684 / 652 | 090.013 | 0        | 0             | 0    | Material 303       | 3/8  | 3/4"      | 25-<br>27.5 | 7.6              | 7.8-<br>8.0   | 24.5           | 26.5           | 22.0 | 39.5 | 17.5           | 25 g              |
| 2TR / 2<br>350 / 4                  | 090.023 | 0        | 0             | 0    | Mat                | 3/8  | 1"        | 32-<br>34.5 | 10.6             | 10.8-<br>11.0 | 30.0           | 31.0           | 22.0 | 44.0 | 21.0           | 32 g              |

 $^*B_R \mathcal{O} = \text{Spigot diameter}$   $^**B \mathcal{O} = \text{Recommended bore diameter}$ 

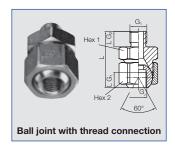





|                  | C       |        | Di                      | mensior   | าร  |      |                                          |      |      |      |                |      |
|------------------|---------|--------|-------------------------|-----------|-----|------|------------------------------------------|------|------|------|----------------|------|
| ဖွ               | Туре    |        | М                       | aterial n | Ю.  |      | [mm]                                     |      |      |      |                |      |
| For Series       |         | 16     | <b>17</b> <sup>1)</sup> | 30        | 56  | 5E   |                                          |      |      |      |                | (SS) |
| For              |         | 303 SS | 316Ti SS/<br>316L SS    | Brass     | POM | PVDF | BSPP H <sub>1</sub> H <sub>2</sub> D Hex |      |      |      | Weight (brass) |      |
| 2TR / 652<br>684 | 065.200 | 0      | 0                       | 0         | -   | -    | 3/8                                      | 13.0 | 10.0 | 12.8 | 22             | 25 g |
| 2TR /            | 065.200 | -      | -                       | -         | 0   | 0    | 3/8                                      | 14.5 | 11.5 | 12.8 | 22             | 25 g |



For filters and non-return valves please refer to page 89


| Example       | Туре    | + | Material no. | = | Ordering no. |
|---------------|---------|---|--------------|---|--------------|
| for ordering: | 090.003 | + | 51           | = | 090.003.51   |





# **Q**o

## Accessories Compact ball joints for narrow installation conditions Non-return valves / filters



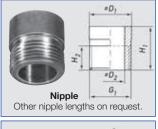
|                                              | Ordering no |             |      |            |                        |                 |                 |      |      |                  |        |
|----------------------------------------------|-------------|-------------|------|------------|------------------------|-----------------|-----------------|------|------|------------------|--------|
| s<br>s                                       | Туре        | Mat.<br>no. | Code |            |                        |                 |                 |      |      |                  |        |
| For Series                                   |             | 16          |      |            |                        |                 |                 |      |      |                  |        |
| R                                            |             | 316 SS      |      | G₁<br>BSPP | G <sub>2</sub><br>BSPP | L <sub>G1</sub> | L <sub>G2</sub> | L    | Hex₁ | Hex <sub>2</sub> | Weight |
| For all nozzles with 1/8" male thread.       | 092.010     | 0           | AA   | 1/8        | 1/8                    | 8.0             | 8.0             | 29.3 | 22   | 24               | 70 g   |
| For all nozzles with 1/4" male thread.       | 092.024     | 0           | AC   | 1/4        | 1/4                    | 12.0            | 12.0            | 44   | 27   | 27               | 140 g  |
| For all nozzles<br>with 3/8"<br>male thread. | 092.030     | 0           | AE   | 3/8        | 3/8                    | 12.0            | 12.0            | 44   | 27   | 30               | 160 g  |

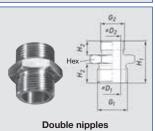
Example Type + Material no. + Code = Ordering no. for ordering: 092.010 + 16 + AA = 092.010.16.AA

| Non-return to | alve with filter |
|---------------|------------------|
|               | 20 bar           |
|               |                  |

Filter

|                      | Ordering no                               | ).                 |        | ure              | ure                  | size      |      |                | nsions                 |                |        |
|----------------------|-------------------------------------------|--------------------|--------|------------------|----------------------|-----------|------|----------------|------------------------|----------------|--------|
| For nozzle Series    | Туре                                      | Mat. no. <b>56</b> | Colour | (Dening pressure | [ag Closing pressure | Mesh size | H₁   | H <sub>2</sub> | m]<br>  D <sub>1</sub> | D <sub>2</sub> | Weight |
| xxx.32x -<br>xxx.44x | <b>065. 265</b> Ball 420 SS Spring 301 SS | 0                  | blue   | 0.5 - 1.0        | 0.4 - 0.9            | 0.25      | 21.5 | 2.0            | 14.8                   | 11.0           | 2 g    |
| xxx.48x -<br>xxx.56x | <b>065. 266</b> Ball 420 SS Spring 301 SS | 0                  | red    | 0.4 - 0.5        | 0.35 - 0.45          | 0.65      | 21.5 | 2.0            | 14.8                   | 11.0           | 2 g    |
| xxx.32x -<br>xxx.44x | 065. 257                                  | 0                  | blue   | -                | -                    | 0.25      | 21.5 | 2.0            | 14.8                   | 11.0           | 2 g    |
| xxx.48x -<br>xxx.56x | 065. 256                                  | 0                  | red    | -                | -                    | 0.65      | 21.5 | 2.0            | 14.8                   | 11.0           | 2 g    |


Example Type + Material no. = Ordering no. for ordering: 065. 265 + 56 = 065. 265. 56


# **Gaskets / Sockets / Nipples**



|                               |                       | Ordering | g no. |                         |             | Dimensions      |            |
|-------------------------------|-----------------------|----------|-------|-------------------------|-------------|-----------------|------------|
|                               | ies<br>Sei            | Туре     | Ma    | aterial r               | 10.         | [mm]            |            |
| ries                          | Series                |          | 55    | 72                      | 73          |                 |            |
| For Series                    | For nozzle            |          | PTFE  | EWP 210 (asbestos free) | Soft rubber |                 | Weight ca. |
| 226 / 468<br>652 / 679<br>684 | retaining nut<br>3/8" | 065.240  | 0     | 0                       | 0           | Ø 11 x Ø 15 x 1 | 0.14 g     |

| G <sub>2</sub>   |
|------------------|
|                  |
| - D <sub>1</sub> |
|                  |





|                                                            | Ordering no.          |             |                |          |    | Dimens<br>[mm  |                |       |     |        |
|------------------------------------------------------------|-----------------------|-------------|----------------|----------|----|----------------|----------------|-------|-----|--------|
| For Series                                                 | Туре                  | Mat.<br>no. |                |          |    | 11111          | ij             |       |     |        |
|                                                            |                       | AISI 316L   | G <sub>1</sub> | $G_2$    | H₁ | H <sub>2</sub> | D <sub>1</sub> | $D_2$ | Hex | Weight |
| For all nozzles with 1/8" male thread.                     | 040.270               | 0           | -              | 1/8 BSPP | 20 | 10             | 13.8           | -     | 14  | 20     |
| For all nozzles<br>with 1/8"<br>male thread.               | 040.271               | 0           | -              | 3/8 BSPP | 20 | 10             | 21.5           | 22    | 22  | 25     |
| For all nozzles<br>with 1/4"<br>male thread.               | 061.220               | 0           | -              | 1/4 BSPP | 20 | 10             | 16.8           | -     | 17  | 25     |
| 2TR / 216 /302 / 308<br>350 / 548 / 468 / 679<br>684 / 652 | 065.210               | 0           | 3/8 BSPP       | -        | 18 | 10             | 17.2           | 11.5  | -   | 20     |
| 2TR / 216 /302 / 308<br>350 / 548 / 468 / 679<br>684 / 652 | 065.215 <sup>()</sup> | 0           | 3/8 BSPP       | 1/4 BSPP | 25 | 10             | 10             | 7     | 22  | 20     |
| 2TR / 216<br>350 / 548 /<br>684 /                          | 065.211 <sup>1)</sup> | 0           | 3/8 BSPP       | 3/8 BSPP | 25 | 10             | 11.5           | -     | 22  | 25     |

<sup>1)</sup> Not to be used with non-return valve or filter.

| Example       | Туре    | + | Material no. | = | Ordering no. |
|---------------|---------|---|--------------|---|--------------|
| for ordering: | 065.240 | + | 55           | = | 065.240.55   |

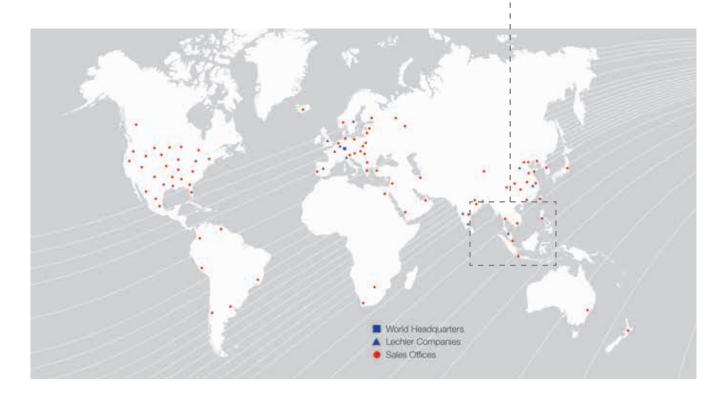
# FOR YOUR NOTES





## **PLEASE CONTACT US LECHLER ASEAN**

#### **ASEAN Headquarters**


#### Lechler Spray Technology Sdn. Bhd.

No. 23, Jalan Teknologi 3/3A Taman Sains Selangor 1 Kota Damansara, PJU 5 47810 Petaling Jaya Malaysia

Phone +603 6142 1288 Fax +603 6156 1153

 $info@lechler.com.my \cdot www.lechler.com$ 



